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Long-term (1990–2019) monitoring of forest cover changes in the humid tropics 

Supplementary Text 

 

Supplementary information on ancillary datasets  

Three ancillary datasets were used to spatially attribute disturbances to (i) conversion to 

commodities or tree plantations (mainly oil palm and rubber), (ii) conversion to water bodies 

(mainly due to new dams), and (iii) specific changes within mangroves.  

 

1. Conversion to commodities or tree plantations 

In the transition map, commodities (oil palm) or tree plantations (rubber) appear either as 

deforested land or other land cover when established during the monitoring period or before 

the initial period, respectively. They can also appear as undisturbed forest or forest regrowth 

when established a long time before the initial period with a spectral signature similar to a 

forest or forest regrowth, e.g. in the case of old oil palm plantations.  

In order to reduce these commission errors, we created a mask of commodities or tree 

plantations from two external data sources: (i) the planted tree datasets from the World 

Resources Institute (WRI) (60,61), which cover 14 countries (Argentina, Australia, Brazil, 

Cambodia, Chile, Colombia, Gabon, Ghana, Guatemala, Honduras, Indonesia, Liberia, 

Malaysia and Peru) and several plantation types, from which we only used ‘Large industrial 

plantations’ and ‘Clearing/very young plantation not mosaic,’ and (ii) the oil palm dataset from 

Duke University (62), which covers a few plantation zones in the tropics.  

Both datasets have been checked visually against high-resolution (HR) images available from 

Google Earth Engine (GEE) (22). Areas that are validated by the photo interpreter as being 



 

 

 

 

covered with commodities and with a correct delineation are incorporated into the commodities 

mask. Commodities that are well identified in the HR images but with a wrong delineation 

have been manually re-delineated by the interpreter and incorporated into the commodities 

mask. 

Then we carried out another check of the transition map to identify and delineate missing areas 

of commodities that are not identified from existing databases. This was done through a 

systematic analysis within the transition map for all areas with specific geometric shapes 

corresponding to plantations. These commodities were delineated visually by the photo 

interpreter and incorporated into the commodities mask. 

This new class of commodities also makes it possible to assess the area of conversion from 

moist forests to such commodities. All pixels of the commodities mask are reassigned to the 

classes of conversion to commodities, e.g. a pixel that was initially labelled as deforested is 

reclassified as “conversion to commodities” with three subclasses: establishment before 2000, 

in 2000–2009, and in 2010–2019. 

 

2. Conversion to water 

To identify conversion from moist forests to water bodies – usually due to the creation of a 

dam – we used the Global Surface Water (GSW) dataset derived from Landsat time series over 

the period 1984–2015 (44) and the GSW updates for the period 2016–2019. This allowed us to 

create two additional classes of deforestation: (i) forest conversion to a permanent water body 

and (ii) forest conversion to a seasonal water body. The GSW time series also provided 

information on the start date of forest conversion (flooding) when the forest was directly 

flooded without prior clearance. We have also integrated the inter-annual variations of the 



 

 

 

 

water bodies in our annual change product by discriminating between permanent water and 

seasonal water from other land cover classes. 

 

3. Changes within mangroves 

We created a specific class of mangroves to assess the status and changes of this specific 

forest ecosystem. We used the Global Mangrove Watch (GMW) dataset (63) to create an 

initial map of mangroves. As the GMW dataset covers the years 1996 and 2006, we first 

produced a maximum extent mask of mangroves during the period 1996–2006 and then 

reassigned the transition classes under the maximum extent mask to produce a map of 

changes in mangroves. As an example of reassignment, “undisturbed TMF (Class 10 of the 

transition map)” is reclassified as “undisturbed mangrove (Class 12).” Eight classes of 

changes within mangroves (including degradation, regrowth and deforestation) have been 

documented with subclasses for each period of disturbance.  



 

 

 

 

Supplementary information on specific tropical forest types 

• The tropical moist forest areas with bamboo dominance might be misclassified as disturbed 

forests due to seasonal or occasional defoliation of the bamboo. Therefore, we use a 

specific approach to map (as Class 11 of the transition map) the bamboo-dominated forests 

(pacales) in two specific zones where they are present over large areas: the Brazilian state 

of Acre, and of eastern Peru. We first created a spatial mask for reclassifying false 

disturbances in these two zones. The spatial mask is created from the South-America 

regional component of the Global Land Cover 2000 (GLC 2000) map (64) combined with 

a visual interpretation of recent high-resolution imagery. Dedicated decision rules are then 

applied for pixels classified as disturbed forest cover within this mask based on the 

disruption events’ recurrence, intensity and distance from roads and rivers in order to 

separate false disturbances from real disturbances (e.g. disturbances within 120 m of roads 

are retained).  

 

• Our tropical moist forest domain includes semi-deciduous forests that appear as evergreen 

forests throughout a full year. However, specific types of forest transitions between the 

humid and dry ecosystem domains, e.g. the Chiquitania forests of northern Bolivia (64,65) 

can behave alternatively as evergreen or seasonal forests during specific years depending 

on the yearly amount and distribution of precipitation (65). If these forests behave as 

evergreen at the beginning of the Landsat archive, temporary defoliation due to drier 

conditions in the second part of the archive may be misclassified as a disturbance, e.g. as 

degradation when defoliation is observed for a duration of less than 900 days. Here we also 

apply dedicated classification rules to avoid such misclassifications due to the variable 



 

 

 

 

seasonal character of this specific forest type. The rules are based on the recurrence and 

intensity of the disruption events and are combined with a spatial mask that is created from 

the South-America regional component of the GLC 2000 map (64) and visual interpretation 

of high-resolution imagery. 

 

• Some savanna wetlands (wet meadows or marshes) can be misclassified as forest or 

disturbed forests due to the scarcity of dryness periods. Such errors are expected to be 

limited due to (i) the consideration of a minimum duration for the initial period and (ii) the 

use of the GWS dataset that documents the water seasonality. A region that is regularly 

flooded since the beginning of the observation period is assigned to the permanent or 

seasonal water class and hence cannot be classified as a TMF. However, for regions with 

geographic and temporal discontinuities in the Landsat archive that are occasionally or 

never detected as water – and/or with gaps caused by persistent cloud cover – periods of 

dryness may not be well covered with Landsat imagery during the initial reference period. 

To avoid these commission errors, wetland areas have been identified using the Global 

Wetlands atlas (https://www2.cifor.org/global-wetlands/) and the GLC 2000 map (64), 

with a further visual check of HR imagery. When misclassification was detected, these 

areas were visually delineated and reassigned to the ‘other land cover’ class (# 90 in the 

transition map). 
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Supplementary information on the transition map 

The transition map shows the spatial distribution of moist forest at 30 m resolution for the year 

2019 and allows the identification of small logging impacts – such as skid trails or logging decks 

in concessions (fig. S3A-D) – and small linear features, such as gallery forests (fig. S4C). 

Various types of deforestation and degradation events are mapped. In particular, the impacts of 

logging activity are captured with different intensity levels: from selective logging impacts, which 

are mapped as degraded forests with a short duration of disturbance detection (Fig. S3A-D), to the 

conversion of forest cover to another type of land cover (mainly pasture or crops) (fig. S4A and 

B) or vegetation regrowth. 

Conversion to tree or shrub plantations occurred mainly for oil palm and rubber trees in Africa and 

Asia (fig. S5B-D). 

Small-scale agriculture also contributes significantly to the conversion and degradation of forests. 

This is the case in both Madagascar and the Democratic Republic of the Congo (DRC), where 

shifting cultivation, small tree plantations, irrigated crops, forest regrowth and dense humid forests 

are often present together as a ‘rural complex’ in landscapes around villages (fig. S6C) or cover 

major parts of the landscape (e.g. in Madagascar). 

In Ivory Coast, most undisturbed forests that existed in 2008 have disappeared, except in a few 

remaining protected areas (fig. S4D). 

Mining exploitation of metals and precious minerals is also a cause of deforestation, such as gold 

mining within the dense forest, often along river courses (fig. S6D). The infrastructure used for 

petroleum extraction (drilling, pipelines) in Gabon also causes damage to forests. 

Strong El Niño southern oscillation (ENSO) events cause droughts and subsequent fires, which 

can lead to long-term degradation or be followed by the full death of tree cover, such as in 



 

 

 

 

Cambodia, where a semi-evergreen forest dried up in 2016 (fig. S7B). The ENSO event that 

occurred in 2015–2016 caused extreme drought in the northern Brazilian Amazon and induced the 

burning of forest cover (fig. S7D). 

Other extreme natural events with very short durations can also cause forest damage. Such events 

include Cyclone Debbie in Australia in April 2017 (fig. S7A), Hurricane Maria in Puerto Rico in 

2017 and Cyclone Hudah in Madagascar in April 2000 (fig. S7C). 

Transport infrastructure, such as main roads and railways, is well captured on the transition map 

within the dense humid forest (fig. S4C). The impacts of new dams are identified as conversion 

from undisturbed forest to seasonal or permanent water (fig. S6A). Finally, the significant 

differences in forest cover patterns between bordering countries illustrate differences in resource 

management policies (fig. S6B). 

 

  



 

 

 

 

Supplementary information on the annual change dataset  

The annual change dataset is a collection of 30 maps depicting – for each year from 1990 to 2019 

– the spatial extents of undisturbed forests and disturbances. The annual maps depict the following 

13 classes: (i) moist forest, (ii) moist forest before the establishment of a tree plantation, (iii) 

bamboo-dominated moist forest, (iv) new degradation (disruptions detected for the first time 

during the considered year), (v) ongoing degradation (disruptions started before the considered 

year and are still detected), (vi) degraded forest (disruptions started before the considered year and 

are not detected anymore), (vii) new deforestation (disruptions detected for the first time during 

the considered year), (viii) ongoing deforestation (disruptions started before the considered year 

and are still detected), (ix) new regrowth (deforestation occurred the year before and disruptions 

are not detected anymore), (x) regrowth (deforestation occurred at least one year before and 

disruptions are not detected anymore), (xi) water (permanent or seasonal), (xii) other land cover, 

and (xiii) invalid observations. 

To obtain the annual classes, we combined the transition map with the following spatial layers: (i) 

number of disruption observations per year, (ii) first and last year of a disturbance period (YearMin 

and YearMax), (iii) recurrence of disruption observations (iv) start year of the archive (first year 

after the initial period), and (v) number of valid observations per year. The creation of annual maps 

is based on the following rules (where Yeari stands for year 1990 to 2019): 

- Deforestation that occurs after degradation is separated from direct deforestation, using 

the recurrence value. The starting years of the disturbances (two in the case of 

degradation before deforestation) are recorded (YearMin and YearMin2, respectively). 



 

 

 

 

- A disturbance is classified as new disturbance in YearMin (for degradation or 

deforestation of undisturbed forest) or YearMin2 (for deforestation of a degraded 

forest). 

- A disturbance is classified as ongoing disturbance after YearMin or YearMin2 until 

YearMax. 

- In the case of a degradation disturbance, a pixel is classified as degraded forest after 

YearMax. 

- A disturbed pixel of the TMF domain is characterized into one of the three following 

timing periods: (i) when Yeari is before StartYear, (ii) when Yeari is after the StartYear 

and the pixel is within tree plantation areas, (iii) when Yeari is after the StartYear and 

the pixel is outside tree plantation areas. 

- In the case of a deforestation disturbance, a pixel is classified as new regrowth on 

YearMax + 1, and then as ongoing regrowth from YearMax + 2. 

- A pixel is classified as permanent water or as seasonal water if located within the 

permanent water area or within the seasonal water area in the GWS annual dataset, 

respectively. 

- A pixel is classified as other land cover for Yeari if located outside the moist forest 

domain and with at least one valid observation available during Yeari.  

- A pixel is classified as no data for Yeari if no valid observations are available for Yeari. 

 

In order to discriminate between ‘deforestation without prior degradation’ and ‘deforestation 

occurring after degradation,’ we applied two conditions to establish that deforestation occurred 

after degradation: (i) a recurrence value lower than 58%, or (ii) a recurrence value lower than 70% 



 

 

 

 

with at least six years without any disruption events between the degradation and the deforestation 

disturbances. These conditions were determined empirically by analyzing various sequences of 

logged and deforested areas. 

In the case of degradation not followed by deforestation, two temporal sequences may be observed: 

(a) only one degradation disturbance is observed with a duration of less than three years and no 

other disruption events are detected until the end of the observation period, or (b) two degradation 

disturbances are observed and are separated by a period of at least four years without any disruption 

events. 

Fig. S1 illustrates the changes visible from this dataset looking at two different years for two 

regions where significant deforestation and degradation occurred during the observation period: 

southern Cambodia and the Brazilian state of Pará. 

 

 

  



 

 

 

 

Supplementary information on trend analysis 

Results at pantropical, continental and subregional levels 

Our analysis shows that tropical moist forests (TMF) covered 1070.9 million ha in January 2020, 

including 964.4 million ha of undisturbed forest. Degraded TMF cover 106.5 million ha and are 

distributed as follows: 36.9% in Latin America, 40.7% in Asia-Oceania and 22.3% in Africa. The 

remaining TMF represent 60% of the extent of tropical natural forests reported by the Food and 

Agriculture Organization (FAO) for the year 2015 (31). 

 

During the period 1990–2019, at pantropical level, 189.2 million ha, 29.5 million ha and 

106.5 million ha of undisturbed TMF were converted into non-forest cover, forest regrowth and 

degraded forests, representing 58.2%, 9.1% and 32.8% of total disturbances, respectively 

(Table 3). Hence the overall loss of TMF (i.e. forests converted to another vegetation type or to 

young forest regrowth) is 218.7 million ha, representing 17.3% of the initial extent of TMF, or the 

extent of Saudi Arabia. In addition, the degraded forest area at the end of 2019 was 

106.5 million ha, accounting for 8.4% of the initial extent of undisturbed TMF. In Asia, the sum 

of degraded forests and forest regrowth represents 48.5% of forest changes, but only 41.4% and 

36.6% of forest changes in Africa and Latin America, respectively. The percentage of edge-

affected forests (from the initial extent of undisturbed forest) is also higher in Asia than on other 

continents, i.e. 43% vs c. 26%. 

 

The extent of undisturbed tropical moist forests has declined by 23.9% since 1990, with a peak 

rate during the period 1995–1999 at 14.4 million ha/year (Tables 1 and 5). This peak rate occurred 



 

 

 

 

in most regions with enough valid observations during the period 1990–1999, i.e. all regions except 

Central and West Africa, where the peak was in 2000–2004. 

Among the three continents, Asia shows the largest relative decline in undisturbed TMF cover 

since 1990, with a 37.9% decrease compared with 24.4% and 19.9% for Africa and Latin America, 

respectively (Table 1). Continental Southeast Asia lost 53.3% of its undisturbed moist forest area, 

either through direct deforestation (33.3% of total disturbances), deforestation of degraded forest 

(35.4%) or through degradation (31.3%) (Tables 5 to 10). For this region, the decline in 

undisturbed forest was slightly faster before 2000 (1.6 million ha/year and 1.3 million ha/year 

before and after 2000, respectively) (Table 5). However, the annual loss rate of undisturbed forest 

cover increased slightly in the past five years (to reach 1.14 million ha/year), mainly due to 

degradation. 

The Central and West Africa regions also show a faster decline in the past five years compared 

with the period 2005–2014 (c. 32% and 48% increase respectively for the Central and West African 

regions). The overall loss of undisturbed forests amounted to 14.5% and 52.6%, respectively, 

compared with the year 2000 (when such forests covered 216 million ha and 32.8 million ha, 

respectively).  

Latin America shows the largest loss rate of undisturbed forest among the three continents, 

particularly from 1990 to 2000 (ranging from 6.2 million ha/year to 6.3 million ha/year). However, 

there was a strong reduction after 2005 (from 6.2 million ha/year in 2000–2004 to 

4 million ha/year in 2005–2019), mainly due to a decrease in the direct deforestation rate (from 

3.1 million ha/year to 1.7 million ha/year) (Tables 5 and 8). The degradation rate fell from 3.1 

million ha/year in 2000–2004 to 2.3 million ha/year in 2005–2019. 

Central America lost 53% of its undisturbed forest area in 1990 (34.5 million ha).  



 

 

 

 

South America experienced a peak in deforestation during the period 1995–1999 and then a 

progressive reduction from 4.4 million ha/year in 1995–1999 to 1.9 million ha/year in 2010–2015 

(Table 6). The degradation rate decreased slightly from 2.6 million ha/year in 1995–2000 to 

2.1 million ha/year in 2010–2015. 

 

Asia shows the largest area of forest conversion to commodities (86% of all pantropical 

plantations), which represents 15.2% of continental disturbances, compared with 1.7% and 0.8% 

for Latin America and Africa, respectively.  

The disturbance types at the end of 2019 were as follows: 3.6% of disturbances were long-duration 

degradation, 20.7% were short-duration degradation (one stage), 10.4% were short-duration in two 

to three stages, 53.8% were deforested, and 8.5% were forest regrowth after deforestation.  

When we considered a buffer zone around pixels detected as disturbed forests (15), our estimate 

of edge-affected degraded forest area increased by a factor of 3.3 or 5.1 for threshold distances of 

120 m or 240 m, respectively.  

 

Area estimates at national level  

The three Southeast Asian countries with the largest remaining areas of undisturbed moist forest 

are Indonesia, Papua New Guinea and Malaysia, with respective losses of 42.1%, 17.7% and 

49.1% of their forest area in 1990. Indonesia was ranked second (after Brazil) for area of 

undisturbed TMF in the early 1990s, but it is now (in 2019) in third position behind Brazil and the 

DRC. 

All countries in continental Southeast Asia have already lost more than half of their undisturbed 

moist forest (up to 68% for Vietnam, 65% for Lao PDR, and 61% for Cambodia and Myanmar) 



 

 

 

 

(Supplementary Table 2). In Cambodia, Laos, Myanmar and Vietnam, 42%, 29%, 26%, and 23% 

of overall disturbances, respectively, occurred in the past 10 years. Papua New Guinea is the Asian 

country with the lowest loss rate (0.24 million ha/year on average over the past 10 years) and is 

now ranked seventh in the world for undisturbed TMF. 

The majority of forest conversion to oil palm and rubber occurred in Asia (18.3 million ha from 

an overall conversion of 21.3 million ha), with the largest contribution from Indonesia and 

Malaysia (12.7 million ha and 5.3 million ha, respectively representing 19% and 38% of their 

overall disturbances). 

A few Asian countries were also impacted by the creation of new dams within the moist forest 

(1.4 million ha of forest conversion across the continent).  

All Southeast Asian countries showed a decline in their disturbance rates after 2000 and most of 

them were particularly affected by the strong El Niño events of 1997–1998 and 2015–2016. The 

high peak in disturbances in 1997 in Indonesia was mostly caused by forest fires in Sumatra, which 

led to 3.5 million ha of new degradation (burned forest that had regrown) and 1.7 million ha of 

direct deforestation (burned forest that was converted to other land cover). Papua New Guinea, 

Thailand and Cambodia were the Asian countries most affected by the ENSO event of 2015–2016. 

 

Five Latin American countries are among the 10 nations with the largest areas of undisturbed 

tropical moist forest. Brazil, Peru, Colombia, Venezuela and Bolivia together represent more than 

half the remaining tropical moist forests (496 million ha). 

Disturbance rates decreased significantly in 2000–2014 compared with 1990–1999 in Brazil and 

Mexico (reductions of 0.62 million ha/year and 0.16 million ha/year, respectively), and increased 



 

 

 

 

in Colombia, Venezuela, Nicaragua and Ecuador (0.23 million ha/year, 0.17 million ha/year, 0.08 

million ha/year and 0.09 million ha/year, respectively). 

From 1990 to 2019, the area of undisturbed TMF in the Legal Amazon declined by 17%, from 

353 million ha in 1990 to 292 million ha in 2019. The annual disturbance rate fell significantly 

after 2005 (Fig. 3), from 3.3 million ha/year and 2.7 million ha/year in 1999 and 2003, 

respectively, down to 0.9 million ha/year in 2012. By 2015, Brazil had accomplished a 60% 

reduction in the deforestation rate of its Amazonian forests from the peak in 1995–2000. However, 

the annual deforestation rates of moist forests in the Brazilian Amazon increased dramatically after 

2015, reaching 3.9 million ha/year in 2016.  

Our estimate of direct deforestation in Brazil is similar to Brazil’s National Institute for Space 

Research (INPE) estimate for the humid domain of the Legal Amazon, particularly from 2004 

when INPE implemented a digital processing approach to mapping deforestation (30) (Fig. 3A). 

Among the American countries, Mexico lost the highest proportion of undisturbed forest (a 74% 

reduction), followed by Nicaragua (66%).  

In Brazil, a total of 0.6 million ha of undisturbed forests has been converted into water bodies, 

including the creation of the Balbina, San Antônio and Belo Monte dams. Peru, Bolivia and 

Venezuela lost 0.14 million ha, 0.11 million ha and 0.10 million ha of undisturbed forests, 

respectively, through conversion to water bodies.  

In Latin America, 2.5 million ha of moist forests were converted to tree plantations, mostly located 

in Brazil (1.62 million ha) with minor contributions from Venezuela and Peru (0.07 million ha and 

0.04 million ha, respectively). 

Peaks in disturbances were observed during strong El Niño events that led to severe droughts in 

South America, in particular in 1991–1992, 1997–1998, 2009–2010 and 2015–2016 (Figs. 3 and 



 

 

 

 

4, and Fig. S11). The warm and dry weather that occurs during El Niño years provides optimal 

conditions to cause and spread fires in the Amazonian forests (29-30). This is made worse when 

fires are used as a tool to clear areas of tropical moist forest for agriculture, with blazes sometimes 

spreading out of control. 

 

In Africa, DRC has the largest remaining extent of undisturbed moist forest at 105.8 million ha 

and the second largest area of such forests at the pantropical level. Gabon, Cameroon and the 

Republic of Congo have similar areas of remaining intact forests (between 19.8 million ha and 

23.4 million ha in 2019). The Republic of Congo and Gabon show very low rates of decline for 

the period 2000–2019 with 0.1 million ha/year and 0.03 million ha/year, respecively, compared 

with the DRC’s 1.4 million ha/year. 

With the exception of Madagascar and Angola, all African countries show an increase in annual 

rates of disturbance after 2009. 

The African countries with the largest reductions in undisturbed moist forest extent are Ivory Coast 

(81.5%), Ghana (70.8%), Madagascar and Angola (67%), Nigeria (47%) and Liberia (36%).  

In West Africa, the disturbance rate shows a recent increase, with 1.1 million ha/year in the past 

five years (2015–2019) compared with 0.68 million ha/year for the period 2005–2014. 

Much of the forested area converted to tree plantations in Africa is located in the DRC (0.08 million 

ha), Cameroon (0.07 million ha) and Gabon (0.04 million ha). 

 

  



 

 

 

 

Supplementary information on validation 

Validation method 

The validation approach includes three steps to produce an accuracy assessment: (i) the sampling 

design, (ii) the response design and (iii) the production of confusion matrices and estimates of 

uncertainties. The sampling design consisted of defining the spatial distribution of the sample 

within our study zone. The response design consisted of defining the protocol of measurements 

over the sample plots, including selecting the dates of Landsat images to be interpreted. 

Sampling design  

The most frequent sampling approach for validating land cover maps is a stratified random 

sampling with strata defined from the classes of the map to be validated and with an independent 

random sample in each stratum (66-68). However, in our case, the transition map depicted 

temporal land cover changes that made this solution difficult to apply. Here we selected a stratified 

systematic sampling scheme, which provides unbiased estimators of accuracy, although it led to a 

non-unbiased and more complex estimation of the variances. The main considerations for this 

choice are:  

• Under spatial correlation decreasing with the distance, systematic sampling is more 

accurate than random sampling, i.e. the actual sampling variance is lower. However, there is no 

unbiased estimator for the variance of systematic sampling, and the usual random sampling 

estimator overestimates the systematic sampling variance, leading to a conservative accuracy 

assessment (69,70).  

• If the sample size or the stratification is modified after plot data collection starts (e.g. 

because of changes in resources or improvement of the stratification), traditional systematic 

sampling with independent sampling may lead to a completely new sample (70). Our selected 



 

 

 

 

stratified systematic sampling minimized this drawback by using a common pattern of ranked 

replicates for all strata.  

• Bi-dimensional systematic sampling usually relies on a regular grid, which should be 

applied in principle on an equal-area projection. Although geographical coordinates do not 

correspond to an exact equal-area projection, the area distortion of geographical coordinates has a 

limited impact in tropical regions. 

 

The sample was designed using three steps: (i) the preparation of a two-level systematic grid of 

potential sample points, (ii) the creation of a stratification layer by combining the transition map 

with an ancillary layer, and (iii) the selection of a set of second-level replicates to reach the target 

number of sample plots per stratum and continent.  

 

We first defined a grid of regular blocks of 1° × 1° latitude-longitude size that covered our study 

zone. A random location was selected within one block, then the set of points that occupied the 

same position in each block defined Replicate 1 (Fig. S10). The location of the second replicate 

was selected randomly within the 1° × 1° block among the locations that maximized the distance 

from Replicate 1. The distance d(1,2) between Replicate 1 and Replicate 2 was the minimum 

distance between two points from each replicate that could belong to adjacent sampling blocks. 

For squared sampling blocks, there was only one location that reached the maximum distance for 

Replicate 2. Replicates 1 and 2 together constituted a new systematic pattern following diagonal 

lines. Additional replicates could be added to intensify the sampling. To preserve a spatial 

distribution that was as homogeneous as possible, the location of each additional replicate was 

selected at random among those that maximized the distance to the previously selected replicates. 



 

 

 

 

Under the assumption that spatial correlation is higher at short distances, by maximizing the 

distance between replicates, we reduced the redundancy of the information provided by the sample 

(70). The use of 1° × 1° blocks implies that the block size diminishes when moving away from the 

equator. Although this effect is limited within the tropics, we handled it by reducing the number 

of plots along each geographical parallel through fraction downgrading between replicates.66 The 

parallel at latitude α has a relative length of approximately cos(α) compared with the equator. 

Therefore, a portion of [1 – cos(α)] plots belonging to Replicate 1 was downgraded to Replicate 2, 

a portion of [2 × (1 – cos(α))] was downgraded from Replicate 2 to 3, and so on. 

 

In the second step, we used the main classes of the transition map as core layers for the 

stratification, i.e. undisturbed forest, degraded forest, forest regrowth, deforested land, recent 

disturbances and other land cover. Moreover, in order to better assess potential omission errors in 

the mapping of disturbances, we added a supplementary (sub)stratum within the undisturbed forest 

stratum using the GFC dataset (24) as an ancillary spatial layer. To compensate for the shorter time 

coverage of the GFC dataset (compared with our dataset), we enlarged the GFC loss areas using a 

spatial buffer of 5 km, similarly to (32). This was intended as a proxy for GFC past deforestation 

(i.e. before 2000), as new deforestation often occurs close to places where deforestation has 

occurred in the past. This led to the division of the undisturbed forest stratum into two strata: 

Stratum 1 (undisturbed forest outside the GFC loss buffer) and Stratum 2 (undisturbed forest 

within the GFC loss buffer). Overall, this resulted in a total of seven strata (fig. S9). 

 

Regarding the availability of information on the structure of the variance relating to the target 

variables across the strata, there are various criteria that can be used to optimize the sampling 



 

 

 

 

allocation, e.g. the traditional Neyman’s rule (71) or multivariate algorithms (72). As we were 

lacking such knowledge on the variability of target variables per stratum, we allocated the same 

sample size (250 sample plots) to each stratum and each continent, leading to heterogeneous 

numbers of plots per replicate, stratum and continent. For example, for the large Stratum 7 in 

Africa, all 197 sample plots from Replicate 1 were allocated and 53 sample plots in Replicate 2 

were selected randomly to meet the target of 250 plots. For a smaller-sized stratum, higher-ranked 

replicates needed to be considered in order to find 250 plots (e.g. up to Replicate 8 for Stratum 2 

in Africa). In spite of this sampling heterogeneity, the sampling algorithm ensured spatial 

regularity and avoided pairs of sample plots that were very close to each other. The overall sample 

consisted of 1750 sample plots by continent (7 strata × 250 plots), i.e. 5250 sample plots for the 

overall study area (fig. S8). 

 

Response design 

The reference dataset of land cover classes was created through visual expert interpretation of 

Landsat images on several dates and of recent higher-resolution satellite images when available.  

Each reference sample plot was assessed over a box size of 3 × 3 Landsat pixels centered on one 

of the 5250 sample points. For each sample plot, a subset of Landsat images was selected for visual 

interpretation. For each image and sample plot (0.81 ha size), the interpreter selected one of the 

following land cover labels: (i) forest cover, (ii) mostly non-forest, (iii) minor non-forest, or (iv) 

invalid. A forest cover label corresponds to mature trees or vegetation regrowth (mosaic of shrubs 

and trees), covering the full plot (nine pixels). The mostly non-forest label corresponds to a sample 

plot including at least five pixels with a non-forest cover (including disruption observations and 

other non-evergreen forest cover, such as savanna, agriculture, and water surface). The interpreter 



 

 

 

 

assigned a minor non-forest label to the sample plot when one to four Landsat pixels with non-

forest spectral signature were observed.  

As it was not possible to interpret all the Landsat images available for each sample plot, we selected 

a subset of Landsat image dates for the visual interpretation, with the aim of optimizing the 

assessment of commission and omission errors and the resulting uncertainties (fig. S9), as follows:  

- The Landsat images were selected from the full archive with at least one image within each 

of three key periods: (i) very recent years (2014–2017) corresponding to the acquisition period of 

Landsat 8 data, (ii) recent years (2007–2013) and (iii) historical period (before 2007). 

- To assess the commission errors, we validated the detection of disruption observations 

from the same Landsat image that led to its detection. For each sample plot belonging to a disturbed 

stratum (i.e. Strata 3–6) or to the other land cover stratum, the Landsat images corresponding to 

the dates of first and last disruption observations (or the dates of the non-evergreen forest cover 

observations for Strata 7) were selected for visual interpretation. 

- To assess omission errors (i.e. potentially missed disruption observations), we validated 

the periods without disruption observations (green boxes in fig. S9), as follows. For Stratum 1 

(undisturbed forest with no GFC loss), three dates from the series of existing Landsat images were 

selected randomly, one for each of the three periods. For Stratum 2 (undisturbed forest within the 

GFC loss buffer), three dates from the series of existing Landsat images were selected for visual 

interpretation: one date selected during the GFC loss year when the sample plot was covered by 

GFC loss pixels, and two dates were selected randomly from Landsat images available during the 

two remaining periods. For Strata 3–6, one date was selected randomly from available Landsat 

images during each forest/regrowth period (periods without disruption observations). In these 

cases (Strata 3–6), the year just after or just before a period with disruption observations was 



 

 

 

 

preferentially selected in order to validate the duration of the disturbance period; e.g. for Stratum 3, 

an image from 2007 was selected instead of a random selection from the period 2007–2013 (as the 

last disruption was observed before 2007). 

This selection process for Landsat images led to the choice of two to four images per sample plot 

and resulted in a total of 14,295 Landsat images to be visually interpreted. 

 

Interpretation interface/tool 

To interpret satellite images over the sample plots, a GEE web interface was developed to facilitate 

the photo-interpretation task by displaying (i) Landsat images on specific dates (see the subsection 

‘Response design’ above), (ii) high-resolution (HR) images from the Digital Globe or Bing 

collections, and (iii) the sample box for each image.  

For each sample plot and for each Landsat image, the expert validator had to select one class from 

the four land cover classes defined in the response design phase (forest cover, mostly non-forest 

cover, minor non-forest cover, or invalid). The expert validator did not have access to the results 

of our mapping approach (transition map or single-date classification) to avoid potential bias 

during this interpretation phase.   

When an HR image was available, a more detailed land cover legend was used with the following 

classes: (i) dense forest (continuous tree cover with > 90% crown cover); (ii) open forest (non-

continuous tree cover with > 50% crown cover); (iii) mostly shrubland; (iv) forest/shrubland 

mosaic (at least 10% of shrubs); (v) minor non-forest (10–50% non-forest cover); (vi) mostly non-

forest (at least 50% non-forest cover); or (vii) invalid (no HR image available or clouds). 

Unfortunately, the exact dates of HR images are not usually available from GEE. Therefore, the 

HR interpretations were used in combination with the Landsat interpretations: (i) to support 



 

 

 

 

evidence in the validation process of the single-date classification algorithm, and (ii) to assess the 

accuracy of the transition classes and uncertainties of area estimates.  

 

Accuracy assessment of the single-date classification algorithm  

Our reference sample dataset was first used to assess the performance of the single-date 

classification algorithm with regard to errors of omission and commission. The accuracy was 

measured against the Landsat interpretations of the reference sample. The HR interpretations are 

provided in the detailed confusion matrix as complementary information to enable a better 

understanding of the commission and omission errors. 

The HR interpretations were reclassified into five larger classes to make them comparable with 

the legend of the Landsat and single-date interpretations: (i) forest, (ii) mostly non-forest, (iii) 

minor non-forest, (iv) shrubland, and (v) invalid. The minor non-forest and the open forest labels 

were grouped in one class (iii). The mostly shrubland and the forest/shrubland mosaic were 

grouped in one class (iv).  

Using the full reference sample, a confusion matrix between the Landsat-based visual 

interpretations and the class values of our transition map was produced (for the three classes forest 

cover, mostly non-forest, and minor non-forest) from which a simplified two-class confusion 

matrix was derived with the forest and non-forest (including mostly non-forest and minor non-

forest) classes. This was used to estimate overall accuracy and related omission and commission 

errors.  

As the single-date classification was carried out using different sensors (TM, ETM+ and OLI 

sensors) on board various satellites, we verified the consistency of classifier performance across 

the main sensors (L5, L7 and L8) by estimating the omission and commission errors for each 



 

 

 

 

sensor. Finally, the validation results were analyzed by continent and for the different land cover 

strata, as well as for different disturbance intensities. 

 

Accuracy assessment of the transition map and uncertainties of area estimates 

Our reference dataset of sample plots was then used for the accuracy assessment of the transition 

map and for estimating errors in area estimates. For this accuracy assessment exercise, we 

considered the land cover classes of the transition map to produce three new classes at the scale of 

the sample plots (3 × 3 pixels) in order to make them comparable with the reference dataset: (i) 

fully undisturbed forest (all nine pixels of the transition map within the sample box were classified 

as undisturbed forest); (ii) mostly undisturbed (fewer than five pixels have changed), and (iii) 

mostly changed. The mostly changed class corresponds to sample plots with (i) at least five pixels 

that have changed from forest to non-forest or degraded forest, and (ii) fewer than five pixels that 

have been classified as other land cover. 

From our reference dataset, we used the Landsat interpretations on different dates (from two to 

four dates) (fig. S9) combined with the HR interpretation to obtain the following potential classes 

for each reference sample plot: 

(i) undisturbed forest (no interpretation of non-forest or mosaic forest/non-forest events) both on 

Landsat and HR (shrubland or mosaic forest/shrubland or invalid); 

(ii) forest with major or minor disturbance only on HR (undisturbed forest on Landsat);  

(iii) forest with major disturbance, i.e. with at least one interpretation of major disturbances (at 

least five pixels) on Landsat, whatever the HR interpretation;  

(iv) forest with minor disturbance, i.e. with at least one interpretation of minor disturbances (fewer 

than five pixels) on Landsat, whatever the HR interpretation. 



 

 

 

 

In addition, for the sample plots with disturbances identified either from the transition map or from 

the reference dataset of Landsat interpretations, we identified subclasses based on the number of 

Landsat images interpreted as disturbed. From the transition map, we defined three subclasses 

based on the number of disruption observations within the box and over the full 36-year period: 

(i) one disruption observation, (ii) two to three disruption observations, and (iii) more than three 

disruption observations. For the reference dataset of Landsat interpretations, we identified four 

subclasses corresponding to the number of images that were interpreted as disrupted (including 

major and minor disturbances), i.e. 1, 2, 3 or 4. 

The numbers of disruption observations in our sample were used to analyze the omission and 

commission errors between the transition map and the reference dataset. 

To estimate the accuracy of the transition map, we used a simplified legend that allowed good 

correspondence between the classes of the transition map and of the interpretations of the reference 

dataset. The simplified land cover legend included two target classes: (i) undisturbed forests and 

(ii) forest changes. From the transition map, a sample plot was considered undisturbed forest when 

the plot box was fully undisturbed (all nine pixels of the box) and was considered forest changes 

in the other cases, i.e. when the plot box contained at least one pixel of disturbance (i.e. including 

minor and major disturbances). From the reference dataset, a sample plot was considered 

undisturbed when there were no disturbance interpretations either on Landsat or on HR (or an 

invalid interpretation on HR), and forest changes in the other cases, i.e. when there was at least 

one disturbance interpretation either on Landsat or on HR.  

The contributions of the sample plots were then weighted based on the stratification used in the 

sampling phase (see the subsection ‘Sampling design’ above). Finally, the user, producer and 

overall accuracies, the omission and commission errors, the confidence intervals of the estimated 



 

 

 

 

accuracies and the corrected estimates of undisturbed and disturbed forest areas with a 95% 

confidence interval on this estimation were computed in accordance with the good practices 

recommended by Olofsson et al. (27). 

 

Validation results 

The validation was performed using a reference dataset of 5119 sample plots with at least one valid 

Landsat interpretation per plot (1705 for Africa, 1693 for Asia and 1700 for Latin America) and a 

total of 12,343 Landsat interpretations (3823 for Africa, 4215 for Asia and 4305 for Latin America) 

distributed temporally (across the period 1982–2016) and across Landsat sensors (L5, L7, and L8). 

The 12,343 Landsat interpretations were compiled from the 5119 sample plots using Landsat 

images on selected dates with no cloud presence, no sensor artefacts and no doubt about the visual 

interpretation (from one to four Landsat images per plot). Within the full sample of the 5119 

reference plots, 3982 sample plots had one valid recent HR interpretation, 3% of the plots had one 

valid Landsat interpretation, 30% had two valid Landsat interpretations, 57% had three valid 

interpretations and 10% had four valid Landsat interpretations. 

Two confusion matrices were produced from the reference sample dataset: one from all valid 

Landsat interpretations (12,343 in total) to assess the performance of the single-date classification 

algorithm, and another from the 5119 sample plots to assess the accuracy of the transition map. 

 

 

Performance of the single-date algorithm 

The confusion matrix for the single-date classification (tables S2 and S3) reports an overall 

accuracy rate of 91.4%, with omission and commission errors for non-forest cover detection of 



 

 

 

 

9.4% and 7.9%, respectively. At continental level, overall accuracy is higher for Africa (94.6%) 

than for Latin America (91.0%) or Asia (89.0%). Among the 577 plots that correspond to the 

omission errors, 86% were classified as forest changes or other land cover on the transition map. 

Moreover, 71% of these plots were confirmed as changes by the HR interpretations. This shows 

that most of the omissions of the single-date classification algorithm were ‘temporary’ omissions, 

as most of these disturbances were then confirmed from the full temporal Landsat time series. 

These probably correspond to omissions at the beginning of disturbance events. It is also important 

to mention that 87% of these omissions were plots with minor non-forest extent (fewer than five 

pixels interpreted as non-forest within the sample plot). 

The accuracy matrices by continent (table S3) show a higher rate of omission errors for Asia 

(14.3%) than for Africa or Latin America (6.5% and 7.1%, respectively) but no significant 

differences were observed among sensors (9.8% for LT5, 9.7% for L8, 9.4% for L7). 

These omission errors (in the single-date classification) mainly appear as other land cover on the 

transition map (49% of these omissions), but also as mostly undisturbed (a spatial majority of 

undisturbed forest within the box) (25%), deforestation without regrowth (17%) and mostly 

degraded or regrowth (10% altogether). The 577 sample plots presenting omission errors are sites 

of intensive disturbances, as 71% of these errors concern sample plots where the total number of 

disturbances detected over the full period was greater than three. 

Among the commission errors in the single-date classification corresponding to forest cover in 

Landsat interpretations and non-forest cover in the single-date classification (480 plots), only 22% 

were interpreted as forest using the HR images, whereas 24% were interpreted as mostly or minor 

non-forest, 35% as shrubland and 18% as invalid. Therefore, a large part of these ‘false detections’ 



 

 

 

 

of single-date disturbance events were observed as disturbances in the most recent HR images. 

This raises the issue of the potential limitations of the visual interpretation of Landsat images. 

Among the sample plots that correspond to these commission errors, 69% were classified in the 

transition map as spatial minor changes (fewer than five pixels within the 3 × 3 pixel box) and 

31% as spatial major changes (more than five pixels within the 3 × 3 pixel box). In addition, of the 

total commission error plots, 67% concern deforestation and other land cover classes; degradation 

and regrowth represent 18%; and classes of mostly undisturbed forest (between five and eight 

pixels of undisturbed forest within the 3 × 3 pixel box) represent 15%.  

More commission errors are observed for Latin America (13.2%) than for Asia (8.3%) or Africa 

(3.2%). These differences can be partly explained by the numbers of Landsat scenes that were 

processed: 540,634 scenes for Latin America, 482,965 scenes for Asia and 231,087 scenes for 

Africa. A larger number of scenes may result in a greater number of errors in the final product due 

to the presence of noise or artefacts within a minor part of the Landsat dataset. These factors cannot 

fully be eliminated. 

Finally, more commission errors were observed for L8 (11.3%) than for L7 (8.2%) or L5 (7.3%) 

(table S3).  

 

Accuracy of the transition map and area estimates 

The accuracy matrix for the transition map shows an overall accuracy (stratum-weighted estimate) 

of 92.8% for the classes of the moist forest domain (tables S4 and S5). The omission and 

commission errors for the forest changes areas are 19% and 8.4%, respectively. 

The commission errors concern mainly (66.3%) minor disturbances on our transition map (fewer 

than four disturbances detected over the observation period and fewer than five pixels within the 



 

 

 

 

sample plot). Of these commission errors, 24.2% concern major disturbances (more than five 

pixels within the plot with at least three detections over the full period). 

The omission errors concern mainly (74.1%) minor disturbances that were identified only once 

from the valid Landsat images or disturbances that were identified only using the HR images 

(15.9%). 

The accuracy matrix for the transition map allows us to produce reference-corrected area estimates 

(table S5). The correction shows that a direct area measurement from the transition map 

underestimates the forest area changes by 38.4 million ha (325.2 million ha derived from the map 

versus 363.6 million ha for the corrected estimate), representing a relative bias of 11.8%, with a 

confidence interval (95%) of this error estimation at 15 million ha.  



 

 

 

 

Supplementary figures and tables 

Fig. S1 Subsets (25 x 34 km) of the annual change layer in two different periods (1990 and 2015) 

for two regions: A, Cambodia (106 ˚ E, 12.5 ˚ N); B, Brazil – Pará region (53˚ W, 6˚ S). 

 



 

 

 

 

Fig. S2 Methodological steps for the definition of the transition classes. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. S3 Subsets (10 km × 30 km) of the transition map capturing different types of logging areas: 

A, logging concession in Ouésso, the Republic of the Congo; B, selective logging in Pará state, 

Brazil; C, logging network in Suriname; D, logging and deforestation in Papua New Guinea. 

Short-duration degradation (logging activities) appears in green and deforestation appears in red. 

 



 

 

 

 

 Fig. S4 Subsets (18 km × 50 km) of the transition map capturing different types of deforestation 

processes: A, deforestation in the south of Porto Velho (Rondônia state, Brazil); B, deforestation 

in Roraima state, Brazil; C, deforestation and degradation due to the proximity of the railway in 

Cameroon; D, degradation and deforestation in a protected area in Ivory Coast. 

 



 

 

 

 

Fig. S5 Subsets (18 km × 50 km) of the transition map capturing different tree plantation areas: A, 

cacao plantation in Venezuela; B, recent large oil palm plantation in Gabon (2015–2017); C, 

massive forest conversion to oil palm plantations in Cambodia; D, oil palm plantations in 

Indonesia. 

  



 

 

 

 

Fig. S6 Subsets (18 km × 50 km) of the transition map: A, forest conversion to water body due to 

a new dam in Malaysia; B, road network in Sarawak, Malaysia, at the border with Kalimantan 

Indonesia; C, rural complex in the Democratic Republic of the Congo; D, gold mining in Peru 

(Madre De Dios, Mazuco).  

  



 

 

 

 

Fig. S7 Subsets (20 x 50 km) of the transition map capturing specific degradation patterns in 

tropical moist forests due to climatic events: A, Cyclone Debbie in 2017 in northern Australia; B, 

droughts in 2016 due to ENSO events; C, Cyclone Hudah in Madagascar in April 2000 (north of 

Antalaha); D, fires related to droughts in the Amazon. Degraded forests appear in light green (if 

occurred before 2016) or brown (in 2016 or 2017). 

 



 

 

 

 

Fig. S8 Sampling plots (5250) used for the validation and accuracy assessment. 

 

 

Fig. S9 Validation response design: selection process for dates of Landsat images within the 

seven strata and three periods, to be interpreted in the reference validation dataset.

 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. S10 Example of systematic blocks of 1˚ x 1˚ longitude-latitude, and Replicates 1 and 2 (one 

replicate is the set of points that occupy the same position in each block), over an area in the 

Democratic Republic of the Congo (around 350 km × 250 km in size and centered on 19.5˚E, 

2˚N) with the transition layer in the background.

 

 

 

 

 



 

 

 

 

Fig. S11 Annual disturbances from 1990 to 2019 for the seven subregions and the countries with 

an undisturbed forest area larger than 5 million ha in 1990. 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

Fig. S12 Forecast year of full disappearance of undisturbed moist forest for countries with an 

undisturbed forest area larger than 1 million ha in January 2020, by applying the average 

disturbance rate for 2010–2019. 

 

 



 

 

 

 

Fig. S13 Extent of the study area. The study area is defined using the ecological zones adopted by 

the FAO and includes the following zones: ‘Tropical rainforest,’ ‘Tropical moist forest,’ ‘Tropical 

mountain system’ and ‘Tropical dry forest.’ 

 

Fig. S14 Total number of valid observations per pixel from the full Landsat archive (1982–2019) 

over the pantropical belt. 

 

 

Fig. S15 Year of first valid observation from the full Landsat archive (1982–2019), across the 

pantropical belt. 

 



 

 

 

 

Fig. S16 Annual average number of valid observations per pixel (by continent) over the period 

1982–2019. Landsat archive for the tropical moist forest domain. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. S17 Multispectral feature space with following clusters: moist forest (dark green points), non-

evergreen cover (orange for bare soils, brown for deciduous vegetation, light green for agriculture, 

blue for water) and invalid pixels (grey for shadows, purple for clouds and pink for haze): (a) hue 

versus saturation (both from SWIR2, NIR, red), (b) hue versus value (both from SWIR2, NIR, 

red), (c) hue (from SWIR2, NIR, red) versus TIR, (d) hue versus NDWI. 

 

  



 

 

 

 

Fig. S18 First year of the monitoring period used for changes analysis 

 
 

Fig. S19 Distribution of the duration of disturbances recorded over the period 1990–2016 for 

each continent. The temporal thresholds used to define short-duration degradation, long-duration 

degradation and deforestation are represented as dashed lines (at one and 2.5 years, respectively). 

 
  



 

 

 

 

Table S1. Correspondence matrix between the main classes of our transition map and the GFC 

loss and gain products for the period 2001–2019 (areas in million ha) at the pantropical scale (A), 

and for the three continents (B–D). 

 

 

 

 

(A) Pan-tropical region 

Transition map No loss, no gain Gain, no loss Loss, no gain Loss & Gain % agree % disagree

Undisturbed Jan 2020 958.3 0.4 5.6 0.2

Old Degradation or Regrowth (1982-2000) 52.4 1.1 2.9 0.3

Old Deforestation (1982-2000) 39.1 2.1 15.5 2.1

Degradation 2001-2019 64.3 0.5 20.1 1.2 24.7 75.3

Regrowth after deforestation (2001-2016) 12.7 0.3 5.7 0.8 33.2 66.8

Deforestation after degradation (2001-2019) 35.3 0.3 22.8 1.4 40.6 59.4

Direct deforestation (2001-2019) 25.3 0.3 42.8 2.6 64.0 36.0

Total without other LC 1248.0 5.4 180.8 12.7

% agreement 84.2

% disagreement 15.816.2 13.7

GFC

97.2 2.8

83.8 86.3

(B) Africa

Transition map No loss, no gain Gain, no loss Loss, no gain Loss & Gain % agree % disagree

Undisturbed Jan 2020 204.4 0.2 2.1 0.1

Old Degradation or Regrowth (1982-2000) 8.2 0.1 0.5 0.1

Old Deforestation (1982-2000) 4.4 0.0 1.3 0.1

Degradation 2001-2019 15.4 0.2 6.1 0.3 29.2 70.8

Regrowth after deforestation (2001-2016) 1.7 0.0 0.8 0.1 33.4 66.6

Deforestation after degradation (2001-2019) 9.4 0.1 7.4 0.5 45.6 54.4

Direct deforestation (2001-2019) 8.4 0.0 6.2 0.1 43.1 56.9

Total without other LC 269.5 0.8 38.1 1.9

% agreement 81.5

% disagreement 18.519.7 10.2

GFC

98.0 2.0

80.3 89.8

(C) Latin America

Transition map No loss, no gain Gain, no loss Loss, no gain Loss & Gain % agree % disagree

Undisturbed Jan 2020 563.0 0.0 1.4 0.0

Old Degradation or Regrowth (1982-2000) 23.0 0.3 0.9 0.1

Old Deforestation (1982-2000) 23.6 0.3 9.5 0.9

Degradation 2001-2019 27.3 0.1 6.8 0.1 20.2 79.8

Regrowth after deforestation (2001-2016) 5.5 0.1 2.1 0.2 29.3 70.7

Deforestation after degradation (2001-2019) 13.4 0.0 8.8 0.3 40.3 59.7

Direct deforestation (2001-2019) 9.3 0.0 23.9 0.5 72.3 27.7

Total without other LC 687.7 0.9 86.0 2.8

% agreement 88.2

% disagreement 11.811.5 14.3

GFC

97.8 2.2

88.5 85.7

(D) Asia - Oceania

Transition map No loss, no gain Gain, no loss Loss, no gain Loss & Gain % agree % disagree

Undisturbed Jan 2020 191.0 0.2 2.0 0.1

Old Degradation or Regrowth (1982-2000) 21.2 0.7 1.5 0.2

Old Deforestation (1982-2000) 11.2 1.7 4.7 1.1

Degradation 2001-2019 21.6 0.2 7.2 0.7 26.6 73.4

Regrowth after deforestation (2001-2016) 5.5 0.2 2.8 0.5 36.5 63.5

Deforestation after degradation (2001-2019) 12.4 0.1 6.6 0.6 36.5 63.5

Direct deforestation (2001-2019) 7.7 0.2 12.7 2.0 65.2 34.8

Total deforestation (2001-2019) 20.1 0.3 19.3 2.7 51.8 48.2

% agreement 77.7

% disagreement 22.323.9 14.9

GFC

94.8 5.2

76.1 85.1



 

 

 

 

Table S2. Accuracy matrix for all the single-date interpretations (12,345 sample plots) by 

continent: 

a) detailed matrix with all Landsat and HR classes; 

  

b) simplified matrix with non-forest and forest classes. 

  

 

Table S3. Accuracy results by continent and Landsat sensor. 

   

 

User map AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot

Mostly non-forest 234 171 236 641 77 60 84 221 104 84 77 265 37 40 93 170 58 167 65 290 510 522 555 1587

Minor non-forest 53 64 58 175 36 16 16 68 23 21 11 55 9 9 17 35 27 64 21 112 148 174 123 445

Forest 0 29 14 43 2 4 1 7 3 6 5 14 3 1 1 5 2 7 0 9 10 47 21 78

Total points Producer 287 264 308 859 115 80 101 296 130 111 93 334 49 50 111 210 87 238 86 411 668 743 699 2110

User map AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot

Mostly non-forest 139 94 70 303 171 95 200 466 149 84 129 362 40 34 69 143 58 130 42 230 557 437 510 1504

Minor non-forest 141 107 58 306 209 150 218 577 243 157 134 534 71 41 89 201 137 229 46 412 801 684 545 2030

Forest 23 39 18 80 56 61 76 193 34 28 8 70 9 8 5 22 9 120 5 134 131 256 112 499

Total points Producer 303 240 146 689 436 306 494 1236 426 269 271 966 120 83 163 366 204 479 93 776 1489 1377 1167 4033

User map AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot AFR Asia SAM Tot

Mostly non-forest 4 0 1 5 7 5 14 26 9 9 50 68 1 5 17 23 0 19 2 21 21 38 84 143

Minor non-forest 5 3 6 14 20 20 33 73 11 28 64 103 6 26 47 79 2 46 20 68 44 123 170 337

Forest 62 86 63 211 219 224 244 687 244 499 169 912 824 434 1399 2657 252 691 310 1253 1601 1934 2185 5720

Total points Producer 71 89 70 230 246 249 291 786 264 536 283 1083 831 465 1463 2759 254 756 332 1342 1666 2095 2439 6200

                        Reference                                                                                                                                                                                                                                                                  

                        Reference                                                                                                                                                                                                                                                                  

                        Reference                                                                                                                                                                                                                                                                  

HR Mostly non-forest Minor non-forest Shurb Forest Invalid

Invalid

HR Mostly non-forest Minor non-forest Shurb Forest Invalid

Landsat Mostly non-forest

Landsat Minor non-forest

Landsat Forest

Total points User

Total points User

Total points UserHR Mostly non-forest Minor non-forest Shurb Forest

Reference

User map AFR ASIA Latin-Am Tot AFR ASIA Latin-Am Tot Tot User

Non-forest 2016 1817 1733 5566 65 161 254 480 6046

Forest 141 303 133 577 1601 1934 2185 5720 6297

Total Producer 2157 2120 1866 6143 1666 2095 2439 6200 12343

ForestNon-forest

      Mostly non-forest Forest

Continent AFR Asia Latin-Am Tot AFR Asia SAM Tot

% Prod Accuracy 93.5 85.7 92.9 90.6 96.1 92.3 89.6 92.3

% Ommission error 6.5 14.3 7.1 9.4 3.9 7.7 10.4 7.7

% User Accuracy 96.9 91.9 87.2 92.1 91.9 86.5 94.3 90.8

% Commission error 3.1 8.1 12.8 7.9 8.1 13.5 5.7 9.2

% Overall Accuracy 94.6 89.0 91.0 91.4

Sensor LC8 LE7 LT5 Tot LC8 LE7 LT5 Tot

% Prod Accuracy 90.3 90.6 90.2 90.4 86.8 92.8 94.8 92.3

% Ommission error 9.7 9.4 9.8 9.6 13.2 7.2 5.2 7.7

% User Accuracy 89.1 92.2 93.9 91.9 88.2 91.3 91.7 90.8

% Commission error 10.9 7.8 6.1 8.1 11.8 8.7 8.3 9.2

% Overall Accuracy 88.7 91.8 92.7 91.4



 

 

 

 

Table S4. Area-weighted confusion matrix for the transition map and a validation reference dataset 

of 4139 sample plots (%). 

 

 

Table S5. Area-weighted matrix showing the transition map versus the reference dataset and error 

estimation (million ha). 

 

 

 

  

Forest on 

Landsat & HR

Forest on Landsat & 

non-forest on HR total

Transition map
Max N 

disruptions 0 0 1 2 3 4 1 2 3 4

Undisturbed (0pix) 0 48.0 0.6 2.6 0.2 0.0 0.0 0.2 0.0 0.0 0.0 52

1 1.5 0.1 0.6 0.1 0.0 0.0 0.1 0.0 0.0 0.0 2

2-3 1.2 0.2 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 2

>3 0.2 0.1 0.7 0.4 0.2 0.1 0.4 1.0 6.6 2.3 12

1 0.4 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1

2-3 0.6 0.1 0.6 0.2 0.0 0.0 0.2 0.3 0.0 0.0 2

>3 0.2 0.1 2.2 1.4 1.1 0.0 3.3 9.4 11.2 0.4 29

Total 52 1 7 2 1 0 4 11 18 3 100

Mostly 

Undisturbed                                      

(1-4pix disturbed)

Mostly changed               

(5-9pix disturbed)

Reference
At least 1 minor disruption on 

Landsat

At least 1 major disruption 

on Landsat

Undisturbed Forest Change Area on the map (Mha)

Undisturbed 898.64 65.76 964.40

Forest Change 27.38 297.82 325.20

926.02 363.58 1289.60

97.0% 81.9%

93.2% 91.6%

65.8 27.4

27.4 65.8

-38.4 38.4

14.8 14.8

Transition map

Reference

CI (95%)

Difference (Mha)

Producer Accuracy 

User Accuracy

Area cor (Mha)

Commission error (Mha)

Omission error (Mha)



 

 

 

 

Table S6 Annual loss rate of undisturbed TMF from 1990 to 2019 over five years, 30 years (1990–

2019) and 10 years (1990–1999, 2000–2009, 2010–2019) by country and percentage of annual 

area loss versus initial TMF areas over the period 1990–2019 (A). Annual rate of direct 

deforestation (of undisturbed forest), deforestation of degraded forest and degradation (followed 

or not by deforestation) with percentage of each disturbance’s type over the total disturbances 

during the 30-year period, as well as areas of water conversion and plantations, and percentage 

(over the total disturbances) (B). 

A. 

 

1990 2019 [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Brazil 411.20 308.89 2.65 4.94 4.26 3.14 2.14 3.34 3.41 3.79 3.70 2.74 24.9%

Indonesia 162.25 94.02 1.09 3.84 2.57 2.31 1.86 1.96 2.27 2.47 2.44 1.91 42.1%

DRC 141.42 105.80 0.20 1.12 1.38 1.26 1.54 1.62 1.19 0.66 1.32 1.58 25.2%

Peru 75.60 66.64 0.14 0.41 0.32 0.33 0.28 0.31 0.30 0.28 0.32 0.29 11.8%

Colombia 74.20 58.14 0.14 0.65 0.85 0.51 0.51 0.55 0.54 0.40 0.68 0.53 21.6%

Venezuela 47.26 38.49 0.06 0.30 0.56 0.22 0.26 0.35 0.29 0.18 0.39 0.31 18.6%

PNG 42.08 34.61 0.15 0.43 0.29 0.13 0.16 0.33 0.25 0.29 0.21 0.24 17.7%

Bolivia 36.80 24.28 0.19 0.56 0.46 0.38 0.57 0.35 0.42 0.37 0.42 0.46 34.0%

Malaysia 29.85 15.20 0.31 0.74 0.55 0.55 0.45 0.33 0.49 0.52 0.55 0.39 49.1%

Congo 24.37 22.21 0.01 0.02 0.06 0.06 0.13 0.16 0.07 0.01 0.06 0.14 8.9%

Myanmar 24.15 9.57 0.28 0.78 0.59 0.51 0.39 0.36 0.49 0.53 0.55 0.38 60.4%

Gabon 24.15 23.45 0.00 0.01 0.03 0.02 0.03 0.05 0.02 0.00 0.02 0.04 2.9%

Cameroon 22.71 19.82 0.00 0.03 0.13 0.08 0.12 0.21 0.10 0.02 0.11 0.16 12.7%

Guyana 18.87 17.95 0.01 0.03 0.04 0.03 0.03 0.05 0.03 0.02 0.03 0.04 4.9%

Philippines 16.78 8.52 0.14 0.38 0.36 0.24 0.24 0.29 0.28 0.26 0.30 0.26 49.2%

Ecuador 15.83 12.12 0.01 0.12 0.21 0.12 0.12 0.17 0.12 0.06 0.16 0.14 23.4%

Lao PDR 15.70 5.48 0.24 0.48 0.42 0.32 0.26 0.33 0.34 0.36 0.37 0.29 65.1%

Viet Nam 14.93 4.81 0.27 0.52 0.41 0.37 0.21 0.25 0.34 0.39 0.39 0.23 67.8%

Suriname 13.76 13.15 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.02 0.03 4.5%

India 11.62 4.20 0.17 0.38 0.33 0.26 0.18 0.17 0.25 0.27 0.29 0.18 63.9%

Mexico 11.60 3.05 0.18 0.60 0.29 0.25 0.15 0.24 0.28 0.39 0.27 0.20 73.7%

Madagascar 10.45 3.41 0.08 0.48 0.30 0.19 0.21 0.14 0.23 0.28 0.25 0.18 67.3%

CAR 9.91 7.12 0.01 0.07 0.15 0.08 0.08 0.16 0.09 0.04 0.12 0.12 28.1%

Cote d'Ivoire 9.74 1.80 0.01 0.16 0.36 0.29 0.36 0.40 0.26 0.08 0.33 0.38 81.5%

Angola 9.52 3.13 0.12 0.38 0.30 0.16 0.17 0.15 0.21 0.25 0.23 0.16 67.1%

Liberia 9.33 5.98 0.01 0.02 0.12 0.12 0.16 0.23 0.11 0.02 0.12 0.19 35.9%

Thailand 9.06 4.07 0.17 0.24 0.17 0.16 0.10 0.16 0.17 0.21 0.17 0.13 55.1%

Nigeria 8.44 4.50 0.02 0.06 0.19 0.14 0.12 0.27 0.13 0.04 0.16 0.19 46.7%

French Guiana 8.14 7.96 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 2.1%

Nicaragua 6.13 2.10 0.02 0.13 0.16 0.14 0.18 0.18 0.13 0.08 0.15 0.18 65.8%

Cambodia 5.85 2.28 0.05 0.12 0.11 0.13 0.14 0.15 0.12 0.09 0.12 0.15 61.1%

Ghana 5.84 1.71 0.00 0.05 0.19 0.15 0.13 0.30 0.14 0.03 0.17 0.21 70.8%

Country
Undisturbed Annual decline of Undisturbed TMF (Mha) Decline 

30y (%)



 

 

 

 

B. 

 

 

 

  

Direct defor Defor. after degrad Degrad Direct defor Defor. after degrad Degrad Mha % Mha %

Brazil 1.63 0.56 0.58 59% 20% 21% 1.623 7.4% 0.619 21.0%

Indonesia 0.68 0.44 0.62 39% 25% 36% 12.660 57.4% 0.515 17.5%

DRC 0.24 0.28 0.32 28% 33% 38% 0.082 0.4% 0.067 2.3%

Peru 0.05 0.07 0.10 23% 31% 46% 0.041 0.2% 0.141 4.8%

Colombia 0.12 0.12 0.14 31% 32% 38% 0.081 0.4% 0.102 3.5%

Venezuela 0.00 0.00 0.01 2% 1% 96% 0.071 0.3% 0.103 3.5%

PNG 0.02 0.04 0.13 9% 22% 69% 0.006 0.0% 0.131 4.5%

Bolivia 0.11 0.09 0.12 34% 27% 39% 0.000 0.0% 0.111 3.8%

Malaysia 0.22 0.05 0.14 53% 13% 33% 5.257 23.8% 0.131 4.4%

Congo 0.01 0.01 0.03 24% 19% 57% 0.006 0.0% 0.013 0.4%

Myanmar 0.11 0.12 0.10 33% 36% 31% 0.020 0.1% 0.113 3.8%

Gabon 0.00 0.00 0.01 15% 11% 74% 0.036 0.2% 0.014 0.5%

Cameroon 0.02 0.01 0.04 30% 15% 54% 0.070 0.3% 0.029 1.0%

Philippines 0.02 0.07 0.11 12% 33% 55% 0.003 0.0% 0.042 1.4%

Ecuador 0.02 0.02 0.05 18% 26% 56% 0.000 0.0% 0.031 1.0%

Lao PDR 0.06 0.09 0.07 28% 40% 32% 0.000 0.0% 0.067 2.3%

Viet Nam 0.07 0.07 0.08 31% 32% 37% 0.003 0.0% 0.175 6.0%

Suriname 0.00 0.00 0.01 29% 18% 53% 0.000 0.0% 0.007 0.2%

India 0.06 0.06 0.06 32% 35% 33% 0.334 1.5% 0.082 2.8%

Mexico 0.06 0.07 0.06 33% 37% 31% 0.000 0.0% 0.029 1.0%

Madagascar 0.06 0.06 0.03 40% 39% 21% 0.061 0.3% 0.025 0.9%

Cote d'Ivoire 0.07 0.06 0.05 39% 33% 27% 0.000 0.0% 0.017 0.6%

CAR 0.02 0.02 0.03 29% 25% 46% 0.171 0.8% 0.003 0.1%

Angola 0.03 0.06 0.06 18% 41% 41% 0.033 0.1% 0.013 0.5%

Liberia 0.02 0.02 0.05 18% 21% 61% 0.146 0.7% 0.003 0.1%

Thailand 0.04 0.04 0.04 30% 34% 36% 0.001 0.0% 0.046 1.6%

Nigeria 0.03 0.02 0.04 32% 25% 43% 0.000 0.0% 0.041 1.4%

French Guiana 0.00 0.00 0.00 29% 15% 56% 0.010 0.0% 0.005 0.2%

Nicaragua 0.03 0.03 0.03 28% 39% 33% 0.000 0.0% 0.005 0.2%

Cambodia 0.07 0.02 0.01 69% 19% 13% 0.000 0.0% 0.065 2.2%

Ghana 0.02 0.03 0.04 26% 30% 45% 0.000 0.0% 0.007 0.2%

Conversion to 

Plantations

Conversion to 

waterCountry Annual rate for period [1990-2020[ (Mha) % over the total disturbances



 

 

 

 

Table S7 Correspondence between countries, subregions and continents. 

 

 

  

Country Name Region Name Country Name Region Name Country Name Region Name

Angola Central Africa Anguilla Central America British Indian Ocean Territory Insular Asia

Burundi Central Africa Antigua and Barbuda Central America Brunei Darussalam Insular Asia

Cameroon Central Africa Aruba Central America Cocos (Keeling) Islands Insular Asia

Central African Republic Central Africa Bahamas Central America Cook Islands Insular Asia

Congo Central Africa Baker Island Central America French Polynesia Insular Asia

Democratic Republic of the Congo Central Africa Belize Central America Indonesia Insular Asia

Equatorial Guinea Central Africa British Virgin Islands Central America Malaysia Insular Asia

Gabon Central Africa Cayman Islands Central America Maldives Insular Asia

Rwanda Central Africa Clipperton Island Central America Micronesia (Federated States of) Insular Asia

Sao Tome and Principe Central Africa Costa Rica Central America Palau Insular Asia

Uganda Central Africa Dominica Central America Philippines Insular Asia

Comoros South and East Africa Dominican Republic Central America Singapore Insular Asia

Eritrea South and East Africa El Salvador Central America Tokelau Insular Asia

Ethiopia South and East Africa Grenada Central America Australia Insular Asia

Glorioso Island South and East Africa Guadeloupe Central America Guam Insular Asia

Ilemi triangle South and East Africa Haiti Central America Kiribati Insular Asia

Kenya South and East Africa Honduras Central America Nauru Insular Asia

Madagascar South and East Africa Jamaica Central America Niue Insular Asia

Malawi South and East Africa Jarvis Island Central America Samoa Insular Asia

Mauritius South and East Africa Johnston Atoll Central America Tonga Insular Asia

Mayotte South and East Africa Martinique Central America Tuvalu Insular Asia

Mozambique South and East Africa Mexico Central America Arunachal Pradesh South-East Asia

Reunion South and East Africa Midway Island Central America Azerbaijan South-East Asia

Seychelles South and East Africa Netherlands Antilles Central America Bhutan South-East Asia

South Sudan South and East Africa Palmyra Atoll Central America China South-East Asia

United Republic of Tanzania South and East Africa Panama Central America Georgia South-East Asia

Zambia South and East Africa Puerto Rico Central America India South-East Asia

Benin West Africa Saint Vincent and the Grenadines Central America Iran  (Islamic Republic of) South-East Asia

Burkina Faso West Africa Turks and Caicos islands Central America Japan South-East Asia

Cote d'Ivoire West Africa United States Virgin Islands Central America Lao People's Democratic Republic South-East Asia

Gambia West Africa Bolivia South America Macau South-East Asia

Ghana West Africa Brazil South America Marshall Islands South-East Asia

Guinea West Africa Colombia South America Nepal South-East Asia

Guinea-Bissau West Africa Ecuador South America Northern Mariana Islands South-East Asia

Liberia West Africa French Guiana South America Pakistan South-East Asia

Libya West Africa Guyana South America Paracel Islands South-East Asia

Mali West Africa Paraguay South America Scarborough Reef South-East Asia

Nigeria West Africa Pitcairn South America Senkaku Islands South-East Asia

Senegal West Africa Saint Helena South America Thailand South-East Asia

Sierra Leone West Africa Uruguay South America Viet Nam South-East Asia

Togo West Africa

Africa Americas Asia-Oceania



 

 

 

 

Table S8. Projections of forest cover in January 2050 (in million ha and percentage of forest cover 

in 2019) and year of decline considering the mean and confidence interval (minimum and 

maximum), for the main countries (with forest area greater than 1 million ha in 2020), considering 

the undisturbed forest (A) and the whole forest (undisturbed and degraded) (B). 

A. Projections of the undisturbed forest   

 

 

 

 

Country
Observed forest 

area in 2020

Predicted forest 

area in 2050

Predicted relative 

forest decline in 2050

Year of decline         

mean

Year of decline 

min

Year of decline      

max

Brazil 308.9 243.2 21% 2164 2126 2215

DRC 105.8 71.4 33% 2113 2100 2129

Indonesia 94.0 51.3 45% 2086 2069 2110

Peru 66.6 59.7 10% 2316 2282 2353

Colombia 58.1 46.4 20% 2172 2148 2200

Venezuela 38.5 31.4 18% 2190 2123 2298

PNG 34.6 28.5 18% 2195 2132 2292

Bolivia 24.3 13.9 43% 2091 2064 2134

Gabon 23.5 22.3 5% 2643 2454 2913

Congo 22.2 18.6 16% 2211 2167 2268

Cameroon 19.8 15.4 22% 2158 2113 2223

Guyana 18.0 16.9 6% 2556 2405 2765

Malaysia 15.2 5.1 67% 2065 2056 2076

Suriname 13.1 12.4 6% 2541 2406 2723

Ecuador 12.1 8.7 28% 2127 2091 2181

Myanmar 9.6 1.5 84% 2055 2045 2069

Philippines 8.5 2.4 71% 2062 2043 2095

French Guiana 8.0 7.8 2% 3323 2996 3760

CAR 7.1 4.2 41% 2094 2067 2135

Liberia 6.0 1.4 76% 2059 2052 2068

Lao PDR 5.5 0.0 100% 2046 2040 2056

Viet Nam 4.8 0.1 97% 2050 2043 2061

Nigeria 4.5 0.0 100% 2049 2037 2068

India 4.2 0.4 90% 2053 2045 2064

Thailand 4.1 1.3 67% 2064 2044 2103

Madagascar 3.4 0.0 100% 2049 2042 2059

Angola 3.1 0.1 97% 2050 2040 2066

Mexico 3.1 0.0 100% 2040 2032 2053

Cambodia 2.3 0.0 100% 2037 2031 2046

Nicaragua 2.1 0.0 100% 2034 2028 2044

Cote d'Ivoire 1.8 0.0 100% 2026 2024 2028

Ghana 1.7 0.0 100% 2029 2025 2038



 

 

 

 

B.  Projections of the whole forest 

 

 

Country Observed forest 

area in 2020

Predicted forest 

area in 2050

Predicted relative 

forest decline in 2050

Year of decline         

mean

Year of 

decline min

Year of decline      

max

Brazil 329.8 280.8 15% 2221 2188 2262

DRC 116.9 91.0 22% 2155 2132 2182

Indonesia 113.2 78.9 30% 2118 2090 2157

Peru 70.4 66.3 6% 2540 2475 2614

Colombia 63.8 55.1 14% 2240 2210 2274

Venezuela 41.1 36.2 12% 2272 2191 2391

PNG 38.9 36.9 5% 2615 2429 2885

Bolivia 28.5 22.3 22% 2157 2117 2214

Gabon 23.9 23.5 2% 3740 3109 4738

Congo 23.3 21.4 8% 2398 2329 2483

Cameroon 21.5 19.3 10% 2313 2242 2406

Malaysia 19.6 12.5 36% 2102 2078 2136

Guyana 18.4 18.0 2% 3243 2968 3598

Ecuador 13.9 12.1 13% 2252 2183 2350

Suriname 13.5 13.1 3% 3098 2868 3391

Myanmar 13.2 6.8 49% 2081 2063 2107

Philippines 12.2 8.7 29% 2124 2074 2223

CAR 8.7 6.9 21% 2163 2129 2207

French Guiana 8.0 7.9 1% 4540 4078 5107

Lao PDR 7.9 3.0 62% 2068 2059 2078

Liberia 7.8 5.2 33% 2110 2083 2148

Viet Nam 7.0 3.0 57% 2072 2062 2085

India 6.1 3.1 50% 2080 2063 2102

Nigeria 6.1 2.9 53% 2076 2058 2103

Thailand 5.6 3.7 35% 2106 2071 2165

Mexico 5.3 2.1 60% 2069 2055 2090

Angola 5.2 2.6 51% 2079 2062 2103

Madagascar 4.4 0.9 79% 2057 2047 2072

Cote d'Ivoire 3.6 0.0 100% 2033 2030 2038

Ghana 3.2 0.0 100% 2048 2037 2067

Nicaragua 3.2 0.1 98% 2050 2038 2071

Cambodia 2.6 0.0 100% 2041 2035 2051
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