Supporting Information for

Not all species will migrate poleward as the climate warms: the case of the seven baobab species in Madagascar

Mario MUNIZ TAGLIARI*, Pascal DANTHU, Jean-Michel LEONG POCK TSY, Cyrille CORNU, Jonathan LENOIR, Vítor CARVALHO-ROCHA, Ghislain VIEILLEDENT*

Supplementary Figures

Figure S1. Species range shifts under climate change for the three resilient baobab species under RCP 8.5. The three species are *A. digitata*, *A. grandidieri*, and *A. za* (one species per row). (a, e, i) Occurrence points over Madagascar elevation map (elevation in m); (b, f, j) Current predicted species distribution. Legend indicates the number of models (0-4) predicting the species presence (c, g, k) Projected species distribution in 2085 under scenario RCP 8.5 and the full-dispersal hypothesis. Legend indicates the number of models (0-12) predicting the species distribution in 2085 under scenario RCP 8.5 and the full-dispersal hypothesis. Legend indicates the number of models (0-12) predicting the species distribution in 2085 under scenario RCP 8.5 and the zero-dispersal hypothesis. Legend indicates the number of models (0-12) predicting the species gresence. For the distribution maps, the species is assumed to be present (green areas) when a majority of models predicts a presence (votes ≥ 1 in the present, and ≥ 6 in the future). The species is considered absent (grey areas) when no model (votes = 0), or a minority of models (votes < 2 in the present, and < 6 in the future), predicts a presence.

Figure S2. Species range contraction under climate change (RCP 4.5) for all baobab species. The seven species are *A. digitata*, *A. grandidieri*, *A. madagascariensis* (*A. mada.*), *A. perrieri*, *A. rubrostipa*, *A. suarezensis*, and *A. za* (one species per row). (a, e, i, m, q, u, y) Occurrence points over Madagascar elevation map (elevation in m); (b, f, j, n, r, v, z) Current predicted species distribution. Legend indicates the number of models (0-4) predicting the species presence; (c, g, k, o, s, w, a') Projected species distribution in 2085 under scenario RCP 4.5 and the full-dispersal hypothesis. Legend indicates the number of models (0-12) predicting the species presence; (d, h, l, p, t, x, b') Projected species distribution in 2085 under scenario RCP 4.5 and the species is assumed to be present (green areas) when a majority of models predicts a presence (votes >= 2 in the present, and >= 6 in the future). The species is considered absent (grey areas) when no model (votes = 0), or a minority of models (votes < 2 in the present, and < 6 in the future), predicts a presence. Maps for *A. perrieri* and *A. suarezensis*, two species distributed at the extreme North of Madagascar, have been zoomed in (black squares).

Figure S3. Change in elevation and latitude for the climate-resilient baobab species. We randomly sampled 1000 points inside the species predicted occurrence area in the present and in the future under RCP 8.5 scenario and full-dispersal hypothesis. **(a, b)** For *A. digitata*, the species should maintain stable its average elevational and latitudinal gradient from the current projection until 2085. **(c, d)** *Adansonia grandidieri* might move to higher elevations and shift its latitudinal range to lower latitudes. **(e, f)** *Adansonia za* could slightly shift its elevational gradient to more elevated areas in 2085 and higher latitudes, i.e. equatorward, from the present to 2085.

Figure S4. Change in elevation and latitude for the all baobab species under RCP 4.5 in the present and under two future scenarios (2055 and 2085). We randomly sampled 1000 points inside the species predicted occurrence area in the present and in the future (due to the extremely reduced distribution area for *A. perrieri* and *A. suarezensis*, we only sampled 416 and 105 points, respectively for year 2085, and another 15 points for *A. suarezensis* in 2055). (a, c, e, g, i, k, m) All species showed a tendency to maintain their current elevational range in the future or move upwards in 2055 or 2085 considering elevation. (b, d, j) Considering latitude distributional range, *A. digitata, A. grandidieri,* and *A. rubrostipa* are expected to move polewards in the future, while (h, l, m) *A. perrieri, A. suarezensis,* and *A. za* are expected to move equatorward, and (f) *A. madagascariensis* might keep stable its current latitudinal range in 2055 and 2085.

Figure S5. Bioclimatic niche of the seven baobabs species found in Madagascar. We computed species bioclimatic niche by randomly sampling 1000 points within each species distribution area for the four climatic variables selected in this study: annual mean temperature, temperature seasonality, mean annual precipitation, and climatic water deficit. Dashed lines (red) represent the climatic conditions through Madagascar. Baobab niche breadth indicates difference between species' climatic niche, with climatic specialist ones (*A. digitata* and *A. madagascariensis* – adapted to warmer temperatures –; *A. grandidieri* – adapted to higher seasonality in temperature), and generalist/ubiquitous species (*A. rubrostipa* and *A. za*), with a wider climatic niche which encompass almost every other baobab species bioclimatic niche.

Figure S6. Relationship between climatic, elevational, and latitudinal gradients in Madagascar. We sampled 1000 random points through Madagascar extent. **(a)** Mean annual temperature is significantly lower as elevation increases. **(b)** Temperature seasonality remains stable as elevation increases, however, as elevation is > 1500 m, temperature seasonality might increase. **(c)** The mean annual temperature variation according to latitude in Madagascar. Mean annual temperature seasonality variation according to latitude in Madagascar. Mean annual temperature ranges between 22 °C to 25 °C across the entire country. **(d)** The temperature seasonality variation according to latitude in Madagascar. We see a decrease in seasonality from South (7200000 UTM) to North Madagascar (8400000 UTM). Shaded area surrounding the red line represents the smooth fitting values of the 1000 random points sampled.

Supplementary Tables

Table S1. Presence data-set used for the species distribution modeling (SDM). We computed the number of presence points with GPS coordinates for each species. Considering a 1-km² spatial grid covering Madagascar, we identified the cells including at least one presence point for each species independently. Doing so we obtained a presence data-set at 1-km² resolution for each species. We removed cells with incomplete associated bioclimatic data from the presence data-set.

Species	Number of initial presence points with GPS coordinates	Number of 1-km ² cells with presence data	Number of 1-km ² cells with presence data in Madagascar and complete bioclimatic data		
A. digitata	1854	151	62		
A. grandidieri	128 609	3772	3770		
A. madagascariensis	1222	159	153		
A. perrieri	150	21	21		
A. rubrostipa	794	93	90		
A. suarezensis	1686	174	170		
A. za	2970	460	460		

Table S2. Performance of the four statistical models in predicting species presence–absence. AUCc and TSSc indicate the mean of the Area Under the ROC Curve and the True Skills Statistics respectively after a 5-fold cross-validation procedure (data were split into 70% of the training data and 30% of test data). AUC full and TSS full indicate the Area Under the ROC Curve and the True Skills Statistics calculated for the full data-set (100% of the data).

Species	Model	AUC full	AUCc	TSS full	TSSc
	GLM	0.972	0.955	0.900	0.903
	GAM	0.989	0.974	0.977	0.949
A. digitata	Random Forests	1	0.969	0.999	0.927
	Maxent	0.970	0.967	0.859	0.875
	GLM	0.991	0.991	0.951	0.951
	GAM	0.991	0.990	0.950	0.951
A. grandidieri	Random Forests	1	0.994	0.988	0.965
	Maxent	0.989	0.989	0.936	0.936
	GLM	0.961	0.958	0.834	0.834
A	GAM	0.966	0.963	0.834	0.837
A. madagascariensis	Random Forests	1	0.964	0.993	0.839
	Maxent	0.959	0.958	0.812	0.819
	GLM	0.993	0.954	0.967	0.913
A	GAM	0.991	0.941	0.981	0.887
A. perrieri	Random Forests	1	0.960	1	0.917
	Maxent	0.987	0.987	0.924	0.946
	GLM	0.959	0.961	0.839	0.856
A multipacting	GAM	0.962	0.963	0.831	0.858
A. rubrostipa	Random Forests	1	0.967	0.999	0.891
	Maxent	0.951	0.953	0.783	0.841
	GLM	0.998	0.998	0.993	0.991
	GAM	0.999	0.998	0.995	0.993
A. Suarezensis	Random Forests	1	0.996	0.999	0.989
	Maxent	0.949	0.960	0.992	0.917
	GLM	0.881	0.870	0.631	0.621
4	GAM	0.893	0.880	0.676	0.655
A. 2a	Random Forests	0.999	0.944	0.992	0.742
	Maxent	0.881	0.870	0.638	0.622

Table S3. Performance of the ensemble model based on committee averaging. Values of the thresholddependent indices True Skill Statistics (TSS), Sensitivity, and Specificity are described below. Almost all TSS values were >= 0.83 except for *A. za*, where the TSS was 0.672 due to a relatively lower specificity. The performance metrics thus indicate good performance of the ensemble model by correctly predicting species presence/absence on committee averaging method.

Species	TSS	Sensitivity	Specificity	
A. digitata	0.92	1.00	0.92	
A. grandidieri	0.95	0.99	0.96	
A. madagascariensis	0.83	0.99	0.84	
A. perrieri	0.97	1.00	0.97	
A. rubrostipa	0.85	0.97	0.87	
A. suarezensis	0.99	1.00	0.99	
A. za	0.67	0.94	0.72	

Table S4. Baobabs' vulnerability to climate change and elevational range shift in 2085 under scenario RCP 4.5. We calculated the species distribution area (km²) in the present (SDAp) and future (SDAf) to describe the change in the species distribution area (Change SDAp SDAf %) according to two dispersal hypotheses (full and zero-dispersal).

Baobab species IUCN status	SDAp (km²)	Current mean elevation (m)	Dispersal hypothesis	SDAf (km²)	Future mean elevation (m)	Change SDAp f (%)
Adansonia digitata	47 872	76	Full	91 692	100	+92
Not assessed by IUCN	47 072	70	Zero	38 293	68	-20
A grandidieri	27 651	135	Full	101 727	285	+268
Endangered A2c*	21 001	100	Zero	27 651	135	0
<i>A. madagascariensis</i> Near threatened	92 311	105	Full	123 913	184	+34
	02 011	100	Zero	85 023	108	-8
<i>A. perrieri</i> Critically endangered C2a(i)	14 872	377	Full	427	762	-97
	11072	017	Zero	427	762	-97
<i>A. rubrostipa</i> Least concern	74 194	77	Full	53 367	283	-28
	74 104		Zero	15 636	277	-79
<i>A. suarezensis</i> Endangered B1ab (i,ii,iii,iv,v) + B2ab (i,ii,iii,iv,v)	3347	194	Full	100	393	-97
			Zero	100	393	-97
<i>A. za</i> Least concern	170 625	265	Full	304 482	294	+78
			Zero	170 622	265	0

Table S5. Climate change within the current species distribution areas. We computed the climatic variables' mean and 95% quantiles within the current species distribution areas for the current and future climates. For the future climate, we considered the mean of the climatic projections of three GCMs (GISS-E2-R; HadGEM2-ES; NorESM1-M) for the year 2085 under RCP 8.5. Abbreviations: Temp_{pf} for mean annual temperature (in °C x 10); Tseas_{pf} for temperature seasonality (in °C sd x 1000); Prec_{pf} for mean annual precipitation (in mm.y⁻¹); Cwd_{pf} for climatic water deficit (in mm) in the present (p) and future (f).

Baobab species	Confiden	Temp _p	Temp _f	Tseas _p	Tseas _f	Prec _p	Prec _f	Cwd_{p}	Cwd _f
	ce interval								
A. digitata	Mean	264	298	1525	1612	1390	1205	800	1680
	2.5%	258	291	1136	1267	953	937	691	1372
	97.5%	270	306	2246	2208	1665	1454	882	1926
A. grandidieri	Mean	251	286	2649	2729	746	715	764	1670
	2.5%	243	277	2338	2402	467	474	642	1447
	97.5%	260	296	2887	3045	956	895	877	1978
A. madaqascariensis	Mean	263	296	1510	1623	1485	1298	724	1546
g	2.5%	253	282	1133	1269	1110	986	399	980
	97.5%	272	308	2008	2101	1953	1733	890	1989
A. perrieri	Mean	243	272	1391	1539	1483	1257	465	962
	2.5%	192	223	948	1117	1262	1063	230	436
	97.5%	267	300	1890	2108	1764	1483	738	1563
A. rubrostipa	Mean	258	292	1972	2046	1088	969	808	1678
	2.5%	240	273	1224	1335	413	395	719	1455
	97.5%	270	306	2898	2921	1650	1451	913	1914
A. suarezensis	Mean	255	283	1275	1389	1288	1103	629	1242
	2.5%	233	259	1221	1333	1121	932	402	724
	97.5%	267	295	1357	1479	1498	1303	794	1653
A. za	Mean	245	280	2583	2668	830	760	689	1488
	2.5%	220	256	1282	1406	430	388	378	870
	97.5%	270	307	3183	3229	1524	1363	902	2010