

Supplementary Information for

Small room for compromise between oil palm cultivation and primate conservation in Africa

Giovanni Strona, Simon D. Stringer, Ghislain Vieilledent, Zoltan Szantoi, John Garcia-Ulloa and Serge Wich

Giovanni Strona E-mail: giovanni.strona@ec.europa.eu

This PDF file includes:

Figs. S1 to S7 Table S1 to S2

Fig. S1. Boxplots showing the relationship between oil palm suitability and primate vulnerability across the whole African continent. Both suitability and vulnerability where resampled on a 100 km² reference grid. Cumulative primate vulnerability was obtained by converting IUCN risk status of each primate species to a numeric value (see Methods for details), and by summing up the vulnerability values of all species present in each grid cell. Oil palm suitability was obtained from The International Institute for Applied Systems and The Food and Agriculture Organization of the United Nations Global Agro-Ecological Zones database (?). We used the model corresponding to a rain-fed, intermediate-level inputs/improved management scenario. Spearman's rank correlation coefficient computed on the whole dataset was 0.29, p-value < 2.2e-16.

Fig. S2. Colorplot showing how the measure of cumulative primate vulnerability varies with mean primate vulnerability and species richness.

Fig. S3. Cumulative range loss for all African primate species in scenarios of random oil palm expansion (dotted black lines) compared to scenarios where conversion is driven by cumulative primate vulnerability (red lines), or by different combinations of criteria based on oil palm suitability and/or human accessibility and/or carbon stock (blue lines). The text above each plot indicates how such criteria where assembled to model the expansion trajectory. For example, "accessibility + vulnerability" identifies a scenario where 100 km² cells were converted to oil palm crop in decreasing order of their accessibility, and where cells having identical accessibility were converted to nicreasing order of their carbon stock availability, with cells having identical carbon stock being converted in decreasing order of human accessibility (i.e. in increasing order of travel time to the closest city), and cells having identical carbon stock and accessibility being converted in increasing order of cumulative primate vulnerability. Oil palm expansion was simulated 1000 times for each scenario, randomizing the removal of cells having identical rank for the selected criteria (for example cells having identical oil palm suitability + carbon"). Lines represent the average value of the 1000 replicates, while shaded areas represent minimum and maximum values (for most scenarios, those are not visible, due to the very small variation in results between simulations). Vertical dotted lines indicate different estimates of the land required to cope with future oil palm demand (in 2050), either considering or not the demand for palm oil destined to biofuel production, and under the alternative, simplified assumptions that either 50% or 100% of the future expansion will happen in Africa.

Fig. S4. Cumulative number of African primate species expected to loose more than 10% of their current range in scenarios of random oil palm expansion (dotted black lines) compared to scenarios where conversion is driven by cumulative primate vulnerability (red lines), or by different combinations of criteria based on oil palm suitability and/or human accessibility and/or carbon stock (blue lines). The text above each plot indicates how such criteria where assembled to model the expansion trajectory. For example, "accessibility + vulnerability" identifies a scenario where 100 km² cells were converted to oil palm crop in decreasing order of their accessibility, and where cells having identical accessibility were converted in increasing order of cumulative primate vulnerability. Similarly, "carbon + accessibility + vulnerability" identifies a scenario where 100 km² cells were converted to oil palm plantation in decreasing order of their carbon stock availability, with cells having identical carbon stock being converted in increasing order of their carbon stock availability, with cells having identical carbon stock being converted in increasing order of human accessibility (i.e. in increasing order of travel time to the closest city), and cells having identical carbon stock and accessibility being converted in increasing order of human accessibility being converted in increasing order of carbon stock availability in the scenario, randomizing the removal of cells having identical rank for the selected criteria (for example cells having identical oil palm suitability and carbon stock availability in the scenario, "suitability + carbon"). Lines represent the average value of the 1000 replicates, while shaded areas represent minimum and maximum values (for most scenarios, those are not visible, due to the very small variation in results between simulations). Vertical dotted lines indicate different estimates of the land required to cope with future oil palm demand (in 2050), either considering or not the demand

Fig. S5. (A) Cumulative range loss (in Mha) for all primate species, and (B) cumulative number of primate species expected to lose more than 10% of their range, under different scenarios of oil palm expansion where land is converted: (i) in decreasing order of oil palm suitability (as in Fig. 1A), with the aim of maximizing yields (orange lines); (ii) in decreasing order of cumulative primate vulnerability (as in Fig. 1B), with the aim of maximizing primate conservation (gold lines); and according to an optimization score attributed to each 100 km² cell aimed at embracing both income and conservation targets (blue lines, see Methods for details). Solid lines represent the average values obtained in 1000 simulations, while the shaded areas represent the minimum and maximum values (in most cases, those are hardly visible since all simulations yielded very similar results). Vertical dotted lines indicate different estimates of the land required to cope with future oil palm demand (in 2050), either considering or not the demand for palm oil destined to biofuel production, and under the alternative, simplified assumptions that either 50% or 100% of the future expansion will happen in Africa.

Fig. S6. Examples of comparison between the geographic ranges of primate species provided by IUCN, and the corresponding ones filtered by the exclusion of non-natural land-cover categories (see Methods in the main text).

Fig. S7. Sensitivity of the cumulative primate vulnerability index (see Methods in main text) to potential range overestimation in IUCN data. We computed the fraction of 100 km² grid cells in the area of interest for our study (having at least minimum suitability to growing oil palm) that changed vulnerability class (from high to medium or low, or from medium to low) following the progressive random removal of increasing fractions of 100 km² grid cells from the original IUCN ranges (change was evaluated in respect to the vulnerability index computed using the original IUCN ranges).

Table S1. Expected range loss under the different scenarios of oil palm expansion for all African primate species, under the assumption that 50% of future global expansion will happen in Africa, taking into account the demand for palm oil for both alimentary and biofuel use. Range loss was computed for each species by excluding protected areas (i.e. assuming that those will be spared from oil palm expansion). Primate ranges have been reduced by the exclusion of non-natural land cover categories.

	average primate range loss (%) per scenario					
species	IUCN status	vulnerability	suitability	accessibility	carbon	random
Allenonithecus nigroviridis	LC	0	21.7	0.6	0.3	82
Allocebus trichotis	VU	0	0	0.0	0.0	0.2
Allochrocebus lhoesti	VU	0	18.9	0.8	Ő	5
Allochrocebus preussi	EN	0	0	1.2	0.6	2.4
Allochrocebus solatus	VII	0	Ő	0	0.0	8.3
Arctocebus aureus		0	24	1	0.8	5.9
Arctocebus calabarensis		2.8	0.1	32.2	47	5.7
Avahi hetsileo	EN	0	0.1	0	0	0
Avahi cleesei	EN	0	0	0	0	0
Avabi laniger	VII	0.2	0	0.2	0	0.4
Avahi meridionalis	EN	0.2	0	0.2	0	0.4
Avahi mooreorum	EN	0	0	0	0	0
Avahi accidentalie	EN	0	0	0	8	17
Avahi neurierasi	VII	0	0	0	0	1.7
Avahi ramananteoavanai	VU	0	0	0	0	0
Avahi unicolor	FN	0	0	0	0	26
Corrocebue gailie		0.2	4.2	11	23	2.0 5.6
Corroceous aguis	NT	0.2	4.2	1.1	⊿.0 0.0	5.5
Corroceous airys		0	0.7	0.1	2.2	5.5 8.4
Cercoceous chi ysoguster	EN EN	0	24.4	0.4	2.4	2.6
Concocchus Junulatus	EN	0	7.4	22.7		2.0
Cercoceous iunuiaius		0	0	22.1	3 0	1.1
Cercoceous sanjei		0	0	0	0 F	2.5
Cercoceous torquatus		0	0.1	29.2	0 20	(E 1
Cercopinecus ascanius		2.2	9.5	1.1	0.2 0.5	0.1 E 0
Cercopilnecus campoelli		0	0.2	0.0	2.0	0.8 5.7
Cercopitnecus cepnus		1.0	2.1	1.2	2.1	ə. (F
Cercopitnecus denti		0	10.0	0.8	0.3	э 7 о
Cercopitnecus aiana	V U CD	0	1	12.0	1.8	105
Cercopinecus aryas		0	40.7	14.2	10	10.5
Cercopilitecus erythrogasier	VU	0	0	44.2	12	7.9 E 7
Cercopinecus ergintolis	VU	0	0.2	14.0	0.7	0.7 C F
Cercopitnecus namiyni	V U L C	0	20.0	1.2	0 7 9	0.5
Cercopitnecus iowei		0.4	4.0	20.2	1.0	0.4
Cercopitnecus mitis		3.2	4.3	1	1.9	2
Cercopithecus mona		2.3	0	23.2	(.2	4
Cercopitnecus neglectus		0.9	10	1.3	2.1	0.3
Cercopitnecus nictitans		1.8	1.1	(.8 10.0	2.9 5 c	0.1
Cercopilnecus pelaurisia	EN	0	0.1 0.0	10.9	0.0	0.8
Cercopitnecus roloway		0	9.9	21.1	2	(.6
Christen have a sciateri		0	0	84.8	0.9	9
Cheirogaleus crossleyi	DD	0	0	0	0	2.1
Cheirogaleus major		0	0	0	0	1.0
Cheirogaleus meaius		0.1	0	0	9.9	1.8
Chloroceous aethiops		0	U 1 0	U	0	0
Chioroceous cynosuros		1.9	1.2	0.6	2.1	1.7
Chloroceous ajamajamensis		0	0	07	U 1 4	
Chloroceous pygerythrus		3.5 0.7	U	0.7	1.4	0.5
Chloroceous sabaeus		0.7	0.2	პ. <i>(</i> 1.0	2.8 1.9	1.5
Contoroceous tantalus		0.9	0.7	1.9	1.8	1.0
Colobus angolensis		3 0.7	9	1.2	3.4 1.4	4.4
Colobus guereza		0.7	2	0.6	1.4	2.9
Colobus polykomos	VU	0	0.6	9.5	2.3	5.5

	average primate range loss $(\%)$ per scenario				0	
species	IUCN status	vulnerability	suitability	accessibility	carbon	random
Colobus satanas	VU	0	1.2	1.9	0.2	5.3
Colobus vellerosus	VU	0	3.2	17.9	9.3	5.1
Daubentonia madagascariensis	EN	Õ	0	0.2	4.6	1.4
Eruthrocebus patas	LC	0.6	0.3	1.2	1.4	0.8
Eulemur albifrons	EN	0	0	1.1	0	0.8
Eulemur cinereicens	CR	Ő	Ő	0	Ő	0
Eulemur collaris	EN	Ũ	Ő	Ő	0	Ő
Eulemur coronatus	EN	Ő	Ő	Ő	24 4	52
Eulemur flavifrons	CB	Ũ	Ő	Ő	18.2	5.2
Eulemur fulvus	NT	Ũ	Ő	Ő	3.8	11
Eulemur macaco	VU	Ũ	Ő	Ő	3.8	59
Eulemur mongoz	CB	Ũ	0.9	18	5.5	14
Eulemur ruhriventer	VII	0	0.5	0	0.0	0.3
Eulemar rufifrons	V U NT	0	0	0	0.4	0.9
Eulemar rafas	VII	0	0	0	10.5 10.7	3.5
Eulemur sanfordi	EN	0	0	0	10.5	2.9
Eucticus elegantulus		1	21	1.2	2.4	6
Enoticus cicyuniaias		1	2.1 0.2	34.0	2.4 9.9	65
Calago gallarum		0.3	0.2	0	2.2	0.5
Galago matsohioi		0.5	0	03	0.1	02
Galago moboli		0.4	0	0.5	0.0	0.2
Galago nonosalensis		0.4	0	0	0.2	0.1
Galagoidas cocos		0.7	0	0.9	16.9	0.5
Galagoides domidovii		0.1	6.2	22.1 5.2	10.2	5.5
Galagoides demidoon		2.5	0.3	0.2 0.4	4 5.6	0.0 0.1
Galagoides granti	LU	17.0	0	2.4	0.0	2.1
Galagoides orinus		0	0	0.7	0	0.5
Galagoides themasi		0	0	0	0 2.0	U E 1
Galagoiaes thomasi		2.1	0.1	4.1	3.2 17	5.1 5 4
Galagoiaes zanzioaricus	LU	0.2	0	30.2	17	5.4 9.4
Gorilla beringei	CR	0	3.9	0.8	07	2.4
Gorilla gorilla	CR	0	2.2	1.2	0.7	5.8
Hapalemur alaotrensis	CR	0	0	0	0	0
Hapalemur aureus		0	0	0	0	0
Hapalemur griseus	VU	1.1	0	0	9.6	1.6
Hapalemur meridionalis	VU	0	0	0	0	0
	V U CD	0.3	0	0.5	0.8	1.5
Indri indri	CR	0	0	0	0	0
Lemur catta	EN	0	0	0	0	0
Lepilemur aeeclis	VU	0	0	0	10	1.9
Lepilemur ahmansonorum	EN	0	0	0	0	0
Lepilemur ankaranensis	EN	0	0	0	30.8	5.7
Lepilemur betsileo	EN	0	0	0	0	0
Lepilemur dorsalis	VU	0	0	0	3.4	3.6
Lepitemur edwardsi	EN	0	0	4.5	17.9	2.3
Lepilemur fleuretae	CR	0	0	0	0	0
$Lepilemur\ grewcockorum$	$_{\rm EN}$	0	0	0	33.3	4.9
Lepilemur hollandorum	$_{\rm EN}$	0	0	0	0	0
$Lepilemur\ hubbardorum$	$_{\rm EN}$	0	0	0	0	0
Lepilemur leucopus	$_{\rm EN}$	0	0	0	0	0
$Lepilemur\ microdon$	$_{\rm EN}$	0	0	0	0	0
Lepilemur milanoii	\mathbf{EN}	0	0	0	24	6.6
$Lepilemur\ mittermeieri$	EN	0	0	0	0	9.9
Lepilemur mustelinus	\mathbf{NT}	0	0	0	0	0
Lepilemur otto	EN	0	0	0	19	4.2
Lepilemur petteri	VU	0	0	0	0	0
Lepilemur randrianasoloi	\mathbf{EN}	0	0	0	0	0

Table S1 Continued:

		avera	ge primate ra	nge loss (%) p	er scenario)
species	IUCN status	vulnerability	suitability	accessibility	carbon	random
Lepilemur ruficaudatus	VU	0	0	0	5.7	0.9
Lepilemur sahamalazensis	CR	0	0	0	12.5	1
Lepilemur scottorum	EN	Ő	Õ	Ő	0	0
Lepilemur seali	VU	Ő	Ő	1.4	Õ	0.3
Lepilemur sententrionalis	CR	Ő	Ő	0	100	10.1
Lepilemur wrightae	EN	Ő	Ő	Ő	0	0
Lophocebus albiaena		0.1	6.3	11	1.3	6
Lophocebus aterrimus	NT	0.1	20.6	1	2.1	7.8
Macaca sulvanus	EN	0	0	0	0	0
Mandrillus leuconhaeus	EN	0	0.2	67	07	5.4
Mandrillue enhing	VII	0	1.2	17	0.1	57
Microcebue arnholdi	FN	0	0	1.7	0.2	0.1
Microcebus armitiat	EN	0	0	0	0	15
Microcebus benalavanaia	EN	0	0	0	20	1.0
Microceous dongoluvensis	EN	0	0	0	_∠∪ 	1.9
Microceous danjossi		0	0	0	22.2	3.2
Microceous griseorujus	LU	0	0	0	0	0
Microcebus joliyae	EN	0	0	0	0	0
Microcebus lehilahytsara	VU	0	0	0	0	0
Microcebus macarthurii	EN	0	0	0	0	0
Microcebus margotmarshae	EN	0	0	0	0	0
Microcebus mittermeieri	EN	0	0	0	0	0
Microcebus murinus	LC	0.2	0	0	9.5	1.7
Microcebus myoxinus	VU	0	0	0	21.6	4
$Microcebus \ ravelobensis$	$_{\rm EN}$	0	0	0	8.3	1.2
Microcebus rufus	VU	0	0	0	0	0
$Microcebus\ sambiranensis$	$_{\rm EN}$	0	0	0	0	0
$Microcebus\ simmonsi$	$_{\rm EN}$	0	0	0	0	1.4
$Microcebus \ tavaratra$	VU	0	0	0	22.9	6
$Miopithecus \ ogouens is$	LC	1.8	1.3	1.5	1.4	5.5
Miopithecus talapoin	LC	0.5	1	1.6	4.1	3.2
Mirza coquereli	$_{\rm EN}$	0	0	0	6.9	1.5
Mirza zaza	$_{\rm EN}$	0	0	0	10.3	7.2
$Otolemur\ crassicaudatus$	LC	2.9	0	0.6	1.5	0.6
Otolemur garnettii	LC	5.7	0	2.1	5	1.6
Pan paniscus	EN	0	27	0.3	0.4	8.1
Pan troglodytes	EN	0	3.9	2.9	1.7	4.8
Papio anubis	LC	0.5	1.3	1.2	1.4	1.3
Papio cynocephalus	LC	6.8	0	1.5	2.9	1
Papio hamadryas	LC	0	0	0	0	0
Papio kindae	LC	0.4	0.1	0.6	1.9	1.4
Papio papio	\mathbf{NT}	0	0	0.8	0.8	0.3
Papio ursinus	LC	0.9	0	0.1	0.2	0.1
Perodicticus edwardsi	$\mathbf{L}\mathbf{C}$	2.5	6.7	3.2	3.7	5.7
Perodicticus ibeanus	$\mathbf{L}\mathbf{C}$	0	9.6	1.2	2.2	5.9
Perodicticus potto	LC	3.5	5.6	21.8	7.5	7.5
Phaner electromontis	EN	0	0	0	10.7	4 4
Phaner furcifer	VII	0	0	0	0	0.9
Phaner nallescens	EN	0	0	0.4	8.4	1.8
Phaner parienti	EN	0	0	0.4	0.4	9.5
Diliocolohus hadius	EN	0	15	15.9	ົ້	3.5 7 4
Piliocolohue housiari	CB	0	1.0	10.0	2.0 6.7	1.4 5 9
1 mocorovus vouvieri Diliogolobus spisni		0	0.0	140	0.7	0.0 0 G
r moconoous epieni Diliocolobus condenament		U	0	14.8	0	0.0
r moconovus goraonorum	EIN	U	U	U 62.6	U 100	0.4
r moconous Kirkii	EIN	U	U 2 4	03.0	18.2	8.8 6.4
		U	0.4 1.9	0.8	1.0	0.4
ruiocolodus preussi	CK	U	1.3	U	U	2.5

Table S1 Continued:

	average primate range loss (%) per scenario					
species	IUCN status	vulnerability	suitability	accessibility	carbon	random
Piliocolobus rufomitratus	EN	0	0	0	25	2.6
Piliocolobus temminckii	\mathbf{EN}	0	0	0	0.9	0.4
Piliocolobus tephrosceles	\mathbf{EN}	0	0	0	0	0
Piliocolobus tholloni	\mathbf{NT}	0	27.2	0.3	1	8.1
Piliocolobus waldronae	CR	0	9	19.1	1.4	7.4
Procolobus verus	\mathbf{NT}	0	4	20.1	5	7.5
Prolemur simus	CR	0	0	0	0	0
Propithecus candidus	CR	0	0	0	0	0
$Propithecus \ coquereli$	$_{\rm EN}$	0	0.2	1.3	32.8	5.3
$Propithecus\ coronatus$	$_{\rm EN}$	0	0	0	6.4	0.9
$Propithecus \ deckenii$	$_{\rm EN}$	0	0	0	16.9	3.3
Propithecus diadema	CR	0	0	0	0	0
$Propithecus \ edwardsi$	$_{\rm EN}$	0	0	0	0	0
$Propithecus \ tattersalli$	CR	0	0	0	12.5	4.7
Propithecus verreauxi	$_{\rm EN}$	0	0	0	0.7	0.1
Rungwecebus kipunji	CR	0	0	0	0	0
$Sciurocheirus \ alleni$	LC	0.3	0.2	35.7	2.5	6.5
$Sciurocheirus\ gabonensis$	LC	0	2.3	1.1	0.5	5.7
Theropithecus gelada	LC	0	0	0	0	0
Varecia rubra	CR	0	0	1.9	0	1.7
Varecia variegata	CR	0	0	0	0	0

Table S1 Continued:

Table S2. Reduction of the original IUCN range for all African primate species when filtered by the exclusion of all non-natural land cover categories (see Methods in the main text for details). This filtering step resulted in the exclusion of a few small-ranged species for which the original range was reduced to 0, namely: *Cheirogaleus minusculus, Cheirogaleus sibreei, Lepilemur jamesorum, Lepilemur tymerlachsoni, Microcebus gerpi, Microcebus mamiratra, Microcebus marohita, Propithecus perrieri.*

species	IUCN range (km^2)	IUCN range adjusted (km^2)	reduction (%)
Allenopithecus nigroviridis	506600	501600	1.0
Allocebus trichotis	43100	42500	1.4
Allochrocebus lhoesti	215400	213900	0.7
Allochrocebus preussi	17000	16900	0.6
Allochrocebus solatus	12200	12200	0.0
Arctocebus aureus	667700	657600	1.5
Arctocebus calabarensis	148600	125200	15.7
Avahi betsileo	1000	1000	0.0
Avahi cleesei	2700	2700	0.0
Avahi laniger	50900	50700	0.4
Avahi meridionalis	1600	1500	6.3
Avahi mooreorum	2100	2100	0.0
Avahi occidentalis	3100	2500	19.4
Avahi peyrierasi	4400	4300	2.3
$A vahi\ ramanant soavanai$	5900	5900	0.0
Avahi unicolor	800	800	0.0
Cercocebus agilis	1052600	1037000	1.5
Cercocebus atys	317000	300200	5.3
Cercocebus chrysogaster	230200	227100	1.3
Cercocebus galeritus	400	400	0.0
Cercocebus lunulatus	120900	118800	1.7
Cercocebus sanjei	400	400	0.0
Cercocebus torquatus	286500	266400	7.0
Cercopithecus $ascanius$	2618800	2501700	4.5
Cercopithecus campbelli	278900	262400	5.9
Cercopithecus cephus	778300	769200	1.2
Cercopithecus denti	409000	392000	4.2
Cercopithecus diana	210800	199800	5.2
Cercopithecus dryas	1400	1400	0.0
$Cercopithecus \ erythrogaster$	73600	66600	9.5
Cercopithecus erythrotis	55800	53900	3.4
$Cercopithecus \ hamly ni$	238300	234600	1.6
Cercopithecus lowei	337700	321100	4.9
Cercopithecus mitis	2306600	2034200	11.8
$Cercopithecus\ mona$	617400	462800	25.0
$Cercopithecus \ neglectus$	2288300	2213700	3.3
$Cercopithecus\ nictitans$	1338900	1287200	3.9
$Cercopithecus \ petaurista$	531800	497800	6.4
$Cercopithecus\ roloway$	136100	129800	4.6
$Cercopithecus\ sclateri$	35800	29000	19.0
Cheirogaleus crossleyi	1400	1400	0.0
Cheirogaleus major	37600	37300	0.8
Cheirogaleus medius	126400	108200	14.4
$Chlorocebus \ aethiops$	1144900	617400	46.1
Chlorocebus cynosuros	3082900	2980000	3.3
$Chlorocebus \ djam djam ensis$	8900	5400	39.3
Chlorocebus pygerythrus	4576400	3590900	21.5
$Chlorocebus\ sabaeus$	1516700	1275900	15.9
Chlorocebus tantalus	3988000	3030600	24.0
$Colobus \ angolensis$	2293700	2232300	2.7
Colobus guereza	3050000	2515200	17.5
$Colobus \ polykomos$	341000	325100	4.7
$Colobus \ satanas$	328400	322900	1.7

Table S2 Continued:

species	IUCN range (km^2)	IUCN range adjusted (km^2)	reduction $(\%)$
Colobus vellerosus	477200	417200	12.6
$Daubentonia\ madagas cariens is$	124500	118600	4.7
Erythrocebus patas	7127300	4982200	30.1
Eulemur albifrons	18400	17700	3.8
Eulemur cinereiceps	1300	1300	0.0
Eulemur collaris	8600	8500	1.2
Eulemur coronatus	6300	4100	34.9
Eulemur flavifrons	2800	2200	21.4
Eulemur fulvus	49300	44400	9.9
Eulemur macaco	8800	7800	11.4
$Eulemur\ mongoz$	8500	5500	35.3
Eulemur rubriventer	49400	49100	0.6
Eulemur rufifrons	33200	30000	9.6
Eulemur rufus	38800	34600	10.8
$Eulemur\ sanfordi$	3800	1900	50.0
$Euoticus \ elegantulus$	782500	769900	1.6
Euoticus pallidus	96300	89700	6.9
Galago gallarum	456700	429800	5.9
Galago matschiei	87500	58100	33.6
$Galago \ moholi$	4246700	3757600	11.5
Galago senegalensis	8388200	5937900	29.2
Galagoides cocos	7000	6800	2.9
Galagoides demidovii	4398500	4224400	4.0
$Galagoides \ granti$	520500	472900	9.1
Galagoides orinus	20000	13500	32.5
$Galagoides\ rondoensis$	100	100	0.0
Galagoides thomasi	4502000	4330200	3.8
$Galagoides\ zanzibaricus$	7200	5300	26.4
Gorilla beringei	49000	48100	1.8
Gorilla gorilla	695900	687200	1.3
$Hap a lemur\ a la otrens is$	200	100	50.0
Hapalemur aureus	2800	2700	3.6
Hapalemur griseus	85600	80200	6.3
Hapalemur meridionalis	6200	6200	0.0
$Hap a lemur\ occidental is$	40300	38500	4.5
Indri indri	29700	29700	0.0
Lemur catta	100100	86300	13.8
Lepilemur aeeclis	6300	5000	20.6
Lepilemur ahmansonorum	600	600	0.0
Lepilemur ankaranensis	1500	1300	13.3
Lepilemur betsileo	2100	2100	0.0
Lepilemur dorsalis	9700	8900	8.2
Lepilemur edwardsi	9300	6700	28.0
Lepilemur fleuretae	700	700	0.0
Lepilemur grewcockorum	1900	1200	36.8
Lepilemur hollandorum	200	200	0.0
Lepilemur hubbardorum	2300	2300	0.0
Lepilemur leucopus	2100	2100	0.0
Lepilemur microdon	600 9600	600	0.0
Lepilemur milanoii	2600	2500	3.8
Lepilemur mittermeieri	1100	1000	9.1
Lepilemur mustelinus	25600	25500	0.4
Lepuemur otto	3800	2100	44.7
Lepuemur petteri	19400	13200	32.0
	15000	14100	0.0
Lepiemur runcaudatus	1000	14100	11.3
Lepilemur sahamalazensis	1300	800	38.5

Table S2 Continued:

species	IUCN range (km^2)	IUCN range adjusted (km^2)	reduction $(\%)$
Lepilemur scottorum	2100	2100	0.0
Lepilemur seali	7300	6900	5.5
Lepilemur septentrionalis	200	200	0.0
Lepilemur tymerlachsoni	100	0	100.0
Lepilemur wrightae	700	700	0.0
Lophocebus albigena	1461900	1408700	3.6
Lophocebus aterrimus	720800	716400	0.6
Macaca sylvanus	41300	21000	49.2
Mandrillus leucophaeus	44200	43300	2.0
Mandrillus sphinx	325500	320400	1.6
$Microcebus \ arnholdi$	100	100	0.0
$Microcebus\ berthae$	600	600	0.0
$Microcebus\ bongolavensis$	800	500	37.5
$Microcebus \ danfossi$	1600	900	43.8
$Microcebus \ griseorufus$	36500	26100	28.5
$Microcebus\ jollyae$	100	100	0.0
Microcebus lehilahytsara	3100	3100	0.0
$Microcebus\ macarthurii$	600	600	0.0
$Microcebus\ mamiratra$	100	0	100.0
$Microcebus\ margot marshae$	900	900	0.0
$Microcebus \ mittermeieri$	300	300	0.0
Microcebus murinus	90400	80700	10.7
Microcebus myoxinus	31400	28700	8.6
Microcebus ravelobensis	3400	2400	29.4
Microcebus rufus	2800	2800	0.0
Microcebus sambiranensis	700	700	0.0
Microcebus tavaratra	4000	3500	12.5
Miopithecus ogouensis	487600	479400	1.7
Miopithecus talapoin	389900	384900	1.3
Mirza coquereli	49600	46200	6.9
Mirza zaza	10600	8700	17.9
	4895800	4121800	15.8
Otolemur garnettii	527100	433200	17.8
Pan paniscus	415300	412000	0.7
Pan trogloaytes	2383300	2338900	1.9
Papio anuois Domio composentatos	1041700	5729000 1465200	20.8
Papio cynocephaias	1941700	205400	24.0 55 1
Papio kindao	437900	205400	35
Panio nanio	2347000	360100	5.5 16 5
Panio ursinus	33/8800	2632400	21 /
Perodicticus edwardsi	2336900	2287800	21.1
Perodicticus ibeanus	861700	767600	10.9
Perodicticus notto	715400	654000	8.6
Phaner electromontis	3500	2800	20.0
Phaner furcifer	20300	20100	1.0
Phaner pallescens	48400	45000	7.0
Phaner parienti	1900	1800	5.3
Piliocolobus badius	286300	273500	4.5
Piliocolobus bouvieri	16500	16500	0.0
Piliocolobus epieni	3500	3500	0.0
Piliocolobus gordonorum	6000	4900	18.3
Piliocolobus kirkii	1800	1100	38.9
Piliocolobus oustaleti	549000	543700	1.0
Piliocolobus preussi	3900	3800	2.6
Piliocolobus rufomitratus	400	400	0.0
Piliocolobus temminckii	67000	58300	13.0

Table S2 Continued:

species	IUCN range (km^2)	IUCN range adjusted (km^2)	reduction $(\%)$
Piliocolobus tephrosceles	4000	3500	12.5
Piliocolobus tholloni	498500	494900	0.7
Piliocolobus waldronae	84900	80900	4.7
Procolobus verus	402500	378500	6.0
Prolemur simus	1900	1900	0.0
Propithecus candidus	1900	1900	0.0
$Propithecus \ coquereli$	30800	22900	25.6
$Propithecus\ coronatus$	45500	42500	6.6
Propithecus deckenii	25400	23100	9.1
Propithecus diadema	16300	16300	0.0
$Propithecus \ edwardsi$	3200	3100	3.1
Propithecus perrieri	0	0	0.0
$Propithecus \ tattersalli$	1600	1600	0.0
Propithecus verreauxi	68500	56100	18.1
Rungwecebus kipunji	100	100	0.0
$Sciurocheirus \ alleni$	95400	88700	7.0
$Sciurocheirus\ gabonensis$	679900	670200	1.4
$The ropithe cus\ gelada$	104400	28400	72.8
Varecia rubra	5200	5200	0.0
$Varecia\ variegata$	9900	9900	0.0