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and connectivity indices theoretically and empirically 
on both artificial and real landscapes.
Results While maintaining the mathematical prop-
erties of fragmentation and connectivity indices, our 
method could distinguish landscapes with identical 
patch size distributions but different spatial configura-
tions. The mean detour index had a different response 
than geometrical indices. This result indicates that, 
at the patch level, topological complexity can exhibit 
different patterns from geometrical complexity.
Conclusions Measuring intra-patch connectivity 
with patch size in fragmentation and connectivity 
indices cannot distinguish landscapes having similar 
patch sizes distribution but different spatial configura-
tions. This paper introduces a method to distinguish 
such patterns relying on geometrical and topological 
indices and shows to which extent it can impact con-
servation planning.

Keywords Landscape fragmentation · Landscape 
connectivity · Landscape indices · Intra-patch 
connectivity · Within-patch connectivity · Spatial 
networks · Spatial graphs

Introduction

Habitat loss and degradation due to anthropogenic 
land-use change are the primary causes of ecosys-
tem collapse and biodiversity decline (Haddad et  al. 
2015; Díaz et  al. 2020). Habitat loss often leads to 

Abstract 
Context Measuring intra-patch connectivity, i.e. 
the connectivity within a habitat patch, is important 
to evaluate landscape fragmentation and connec-
tivity. However, intra-patch connectivity is mainly 
measured with patch size, which can conceal diverse 
intra-patch connectivity patterns for similar patch size 
distributions.
Objectives We suggest a method to refine the intra-
patch connectivity component of fragmentation and 
connectivity indices. This method allows for distin-
guishing different intra-patch connectivity patterns 
for similar patch size distributions.
Methods We used normalized patch complexity 
indices to weight patch size in common fragmentation 
and connectivity indices. Patch complexity indices 
included two existing geometrical indices (SHAPE 
and FRAC), and a new index derived from spatial 
network analysis, the mean detour index (MDI). We 
analyzed the behaviours of adjusted fragmentation 
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fragmentation, which is the process during which 
large patches of habitat are separated into a higher 
number of smaller patches (Wilcove and McLellan 
1986), and to a loss of connectivity, which defines as 
the ability of species to migrate or disperse between 
(inter-patch connectivity) or within (intra-patch con-
nectivity) habitat patches (Taylor et  al. 1993). At 
the landscape scale, fragmentation and connectivity 
are evaluated through spatial patterns metrics that 
are useful to assess land-use change impacts and to 
inform conservation planning.

Many indices have been developed to describe 
fragmentation, such as the number of patches, the 
habitat edge length, or the habitat amount (Forman 
and Godron 1986; O’Neill et al. 1988; Li and Reyn-
olds 1993; McGarigal et  al. 2012; Jaeger 2000). 
Indeed, fragmentation encompasses various patterns 
that cannot be measured with a single and universal 
index. Moreover, as the impacts of fragmentation per 
se (i.e. independent of habitat loss) on biodiversity 
are more intricate than those only related to habitat 
loss (Fahrig 2003, 2017; Vieira et al. 2018), fragmen-
tation indices must be used carefully and related as 
much as possible to biological processes and focal 
species ecological requirements (Hargis et  al. 1998; 
Rutledge 2003; Li and Wu 2004).

Regarding the analysis of connectivity patterns, 
graph-theoretic connectivity indices have been 
applied to a wide range of applications (Urban and 
Keitt 2001; Pascual-Hortal and Saura 2006; Saura 
and Pascual-Hortal 2007; Saura and Rubio 2010). 
In such indices, the landscape is represented as a 
network (or graph) of habitat patches that are con-
nected according to structural or functional param-
eters reflecting focal species’ movement and disper-
sal capabilities, such as inter-patch distances or least 
cost path analysis (Galpern et al. 2011). The integral 
index of connectivity (IIC, Pascual-Hortal and Saura 
2006) and the probability of connectivity (PC, Saura 
and Pascual-Hortal 2007) are two commonly used 
graph theoretic connectivity indices. They both com-
bine topological network analysis with patch size dis-
tribution as the intra-patch connectivity component. 
Recently, a new graph-based connectivity measure 
was also introduced, ProNet, which is easier to com-
pute than IIC and PC (Theobald et al. 2022).

The intra-patch connectivity is an important ele-
ment in all of these measures. Indeed, only measur-
ing inter-patch connectivity leads to interpreting the 

connectivity as null when the landscape consists of a 
single habitat patch. Similarly, dismissing intra-patch 
connectivity can indicate an increase in connectiv-
ity along with increased fragmentation (Tischendorf 
and Fahrig 2000a, b; Laita et al. 2011; Spanowicz and 
Jaeger 2019). Consequently, fragmentation and con-
nectivity indices that are currently the most robust 
are those that incorporate an intra-patch connectiv-
ity component, such as MESH, IIC, or PC. Yet, the 
question of how to measure intra-patch connectivity 
has been much less explored than inter-patch con-
nectivity. In the vast majority of cases, patch area is 
the proxy measure of intra-patch connectivity and, 
therefore, represents the amount of habitat available 
within the patch (e.g. Fahrig 2013; Shanthala  Devi 
et  al. 2013; Reza et  al. 2018; Xu et  al. 2019; Shao 
et al. 2021).

However, the area alone cannot reflect all pat-
terns of intra-patch connectivity. Indeed, it cannot 
discriminate similar patch size distributions with dif-
ferent spatial configurations. For example, two land-
scapes with a single patch of the same size, compact 
in the first case and elongated in the second, can be 
expected to have different effects on species move-
ments within the patch (see Fig. 1), especially on spe-
cies that have limited movement capabilities outside 
the habitat patch. In landscapes with several patches, 
with the same patch size distribution and the same 
isolation level (i.e. the minimum distance between 
patches), the spatial configuration of patches should 
also impact how species can move from one patch 
to another. We illustrated this case in Fig.  2, where 
the middle patch, although having the same area in 
both examples, does not involve the same intra-patch 
dispersal distance between the two other patches. 
On the other hand, shape indices such as the shape 
index (SHAPE, Patton 1975; McGarigal et al. 2012) 
or the fractal dimension (FRAC, Mandelbrot 1983; 
Kenkel and Walker 1993; McGarigal et  al. 2012) 
can discriminate different spatial configurations 
using patches’ geometrical properties, but they will 
not distinguish large patches from small ones. Area-
weighted geometrical indices (McGarigal et al. 2012) 
take into account the area of patches to give an over-
all picture of patches’ complexity over a landscape, 
but two landscapes with the same habitat abundance, 
the same patch isolation, similarly shaped patches, 
and different patch sizes distributions will not be dis-
tinguished (see Fig. 3).
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In this article, we introduce a method to refine 
intra-patch connectivity measures into fragmentation 
and connectivity indices (e.g MESH, IIC, PC). By 
combining patch area and normalized patch complex-
ity indices, this method improves fragmentation and 
connectivity analyses by introducing a new family 
of “topo-ecological” patch attributes (Ricotta et  al. 

2000). We illustrate this method using two existing 
geometrical indices, SHAPE and FRAC, and intro-
duce a new index derived from spatial network analy-
sis, the mean detour index (MDI, Barthelemy 2010). 
After showing that our method preserves the math-
ematical properties of fragmentation and connectiv-
ity indices, we evaluate its response on both artificial 

Fig. 1  Two landscapes 
containing a single patch 
of equal size and different 
shapes

Fig. 2  Two landscapes 
with the same total habitat 
amount, same patch size 
distribution, and same patch 
isolation. The middle patch 
is a stepping stone whose 
spatial configuration can 
affect species migration and 
dispersal fluxes between 
other patches

Fig. 3  Two landscapes 
with the same total habitat 
abundance, high patch com-
pactness but different patch 
sizes distribution
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and real landscapes, show how it allows distinguish-
ing identical patch size distributions with different 
spatial configurations, and investigate its implications 
on patch prioritization. In the following, we rely on 
a raster representation of the landscape, as it is cur-
rently the most common data type for landscape indi-
ces calculation (McGarigal et  al. 2012; Hesselbarth 
et  al. 2019). However, all the methods described in 
this article can be applied to other spatially-explicit 
landscape representations such as vector data or hex-
agonal grids.

Methods

Complexity-weighted patch area (CWA) as a measure 
of intra-patch connectivity

One of the main reasons that can explain why patch 
area is the most common measure of intra-patch con-
nectivity is that it is a simple measure with a strong 
ecological foundation: patch area represents the total 
amount of habitat which is accessible within a patch 
(Fahrig 2013). On the other hand, we have seen that 
patch area alone cannot distinguish patch complex-
ity patterns and that patch complexity indices do not 
integrate the notion of habitat amount (see Figs.  1, 
2, and 3). To overcome this limitation, we suggest 
a refined measure of intra-patch connectivity that 
combines patch complexity with the amount of habi-
tat accessible within a patch. Let C be a patch com-
plexity index having a predefined range of variation 
between 0 (excluded) and 1 (included), such that 0 
correspond to an infinite complexity (asymptotic 
bound) and such that 1 corresponds to an optimal 
(low) complexity (e.g. a perfect disk if the complex-
ity is defined geometrically). If Ap is the area of patch 

p, and Cp the measure of C for the patch p, then we 
propose to measure intra-patch connectivity with the 
complexity-weighted patch area, given by:

This measure expresses in area units, varies between 
0 (excluded) and Ap (included), and corresponds to an 
adjusted measure of the available habitat area within 
the patch. If the patch has an optimal complexity 
(according to the definition of C) then CWA(p) = Ap , 
any two locations in the patch can be joined with 
an optimal path (i.e. shortest, or least cost) entirely 
included in the patch. The higher the patch complex-
ity is, the lower CWA(p) is, which tends to 0 as the 
complexity increases. Although the infinite complex-
ity is an asymptotic bound, it can be interpreted as 
the hypothetical case when it is impossible to move 
within the patch, then the accessible area within the 
patch is null, regardless of its area.

Many patch complexity indices can be used with 
CWA. In this study, we considered the usage of 
two existing geometrical indices, the shape index 
(SHAPE, Patton 1975; McGarigal et al. 2012) and the 
fractal dimension (FRAC, Mandelbrot 1983; Kenkel 
and Walker 1993), and we introduce the mean detour 
index, a new topological complexity index derived 
from spatial network analysis which measures the effi-
ciency of a spatial network (MDI, Barthelemy 2010). 
This third index rely on graph-based representation 
at the patch level, where patches are represented as 
a network of interconnected cells (see Fig.  4). Its 
value corresponds to the average ratio between the 
“natural” (i.e. optimal) and the “route” (i.e. within the 
patch) distance between all pairs of cells in the patch 
(see Fig. 5). MDI varies between 0 (excluded) and 1 
(included) and is highly robust to changes in spatial 

(1)CWA(p) = Cp × Ap

Fig. 4  Representation of 
three patches as raster cells 
(a) and the corresponding 
cell-based spatial network 
representation with the 
four-connected neighbour-
hood

(a) Raster cells (b) Cell-based spatial network
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scale (see robustness assessment in Appendix A.1.4). 
It can therefore be used as is in CWA. SHAPE var-
ies between 1 (low complexity) and increases with-
out limit with increased complexity, and FRAC varies 
between 1 (low complexity) and 2 (high complexity). 
The ranges of variation of 1∕SHAPE and 1∕FRAC are 
both included in ]0, 1] and can therefore be used in 
CWA. More details about SHAPE, FRAC, and MDI 
are given in Table 1 and Appendix A.1.

Integration of CWA into fragmentation and 
connectivity measures

In most fragmentation and connectivity indi-
ces, the intra-patch connectivity component is 
taken into account through the patch area. The 
complexity-weighted patch area constitutes a new 

“topo-ecological” patch attribute (Ricotta et al. 2000) 
that can be seamlessly integrated into such indices by 
using CWA instead of the patch area. As for a given 
patch p, CWAp ≤ Ap always hold, CWA conserves 
most mathematical properties of fragmentation and 
connectivity indices. In this study, we considered 
the integration of CWA into the effective mesh size 
(MESH), the integral index of connectivity (IIC), and 
the probability of connectivity (PC). The first index, 
MESH, is a fragmentation index based on the habi-
tat patch areas distribution within the landscape (Jae-
ger 2000). On the other hand, IIC (Pascual-Hortal 
and Saura 2006) and PC (Saura and Pascual-Hortal 
2007) are both connectivity indices based on a spa-
tial network (or graph) representation of patches in 
the landscape. In such a representation, the landscape 
is represented by a network G = (V ,E) with V the set 
of nodes (patches) and E ⊆ V × V  the connections 
between patches (edges). Two patches are connected 
if they satisfy a given condition, which users must 
determine according to the use case (Galpern et  al. 
2011). In practice, the condition is either structural 
(e.g. distance threshold) or functional (e.g. species 
dispersal capacities) and chosen according to focal 
species. In Fig. 6, we depict an example of such a net-
work representation with a maximum distance thresh-
old. The main difference between IIC and PC is that 
PC uses a probabilistic connection model where each 
edge is labelled with a probability (e.g. probability of 
dispersal between two patches), whereas IIC uses a 
binary connection model. More details about MESH, 
IIC, PC, and the integration of CWA in these indices 
are given in Table  1 and Appendix  A.2 and A.3. In 

Fig. 5  Illustration of the best possible shortest path (Manhat-
tan path, dashed line) and the actual shortest path (plain line) 
between i and j in a patch. The Manhattan path has a length of 
7 and the actual shortest path has a length of 11

(a) Landscape with patches of different sizes (b) Network representation of (a), with size as node
attribute

Fig. 6  Network representation of a landscape: each patch cor-
responds to a node, and any two patches are connected if they 
satisfy a structural (e.g. distance threshold) or functional (e.g. 

migratory path of focal species) condition. Here, the landscape 
in (a) is represented in (b) as a spatial network with a maximal 
distance threshold as the connectivity condition
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the following, we respectively denote the modified 
version of these indices by MESHCWA , IICCWA , and 
PCCWA.

The intra R package

We developed the intra R package to provide the 
necessary tools to compute CWA using SHAPE, 
FRAC, or MDI as patch complexity indices. 
Although existing software packages are available to 
compute SHAPE and FRAC (e.g. McGarigal et  al. 
2012; Hesselbarth et  al. 2019), there is no existing 
software package to compute MDI from a cell-based 
representation of patches. Since MDI requires the 
computation of the shortest path between all pairs 
of cells within all patches, which is a computation-
ally expensive task, we implemented intra’s algo-
rithms in C++ taking advantage of parallelization 
with OpenMP (https:// www. openmp. org/). We relied 
on Rcpp to integrate our C++ code with R (Eddel-
buettel 2013). The intra package provides func-
tions to compute MESHCWA , and functions to export 
a raster landscape as a vector layer with CWA as a 
patch attribute. Such vector layers can be used along 
with software packages such as Conefor (Saura and 
Torné 2009), or Makurhini (Godínez-Gómez and 
Correa  Ayram 2020) to compute IICCWA or PCCWA . 
The intra R package is distributed as open-source 
software on Github: https:// github. com/ dimit ri- juste 
au/ intra.

Evaluation on artificial landscapes

First, we used artificial landscapes to evaluate the 
ability of CWA to discriminate identical patch size 
distributions having different spatial configurations 
when the index is used as the intra-patch connectiv-
ity measure within a fragmentation. We illustrated 
the impact of using CWA in fragmentation measure 
through the MESH fragmentation index. We gener-
ated a landscape series where all landscapes have the 
same patch sizes distribution, thus the same MESH 
value, but different spatial configurations. To this 
end, we used the rflsgen software (Justeau-Allaire 
et al. 2022) to generate a non-spatially-explicit land-
scape structure, and we generated artificial neutral 
landscapes varying the terrain dependency parameter 
td of rflsgen from 0.0 (low spatial complexity) to 
1.0 (high spatial complexity) with a step of 0.01. For 
each td value, we generated 10 different landscapes, 
resulting in a total of 1010 artificial landscapes. The 
four-connected neighborhood was used to define 
patches. A subset of these generated landscape series 
is depicted in Fig. 7. For each of these landscapes, we 
computed MESHCWA using SHAPE , FRAC , and MDI 
as patch complexity indices. We evaluated the ability 
of each index to discriminate the different spatial con-
figurations and we compared how complexity indices 
alter the available habitat area within CWA. Notably, 
we tested the monotony of MESHCWA ’s response to 
the spatial complexity using the Spearman rank cor-
relation coefficient.

Fig. 7  Landscape series of 
ten landscapes having the 
same patch sizes distribu-
tion, but different spatial 
configurations. This land-
scape series was generated 
with the flsgen neutral 
landscape generator, with 
a terrain dependency ( td ) 
varying from 0.1 (low spa-
tial complexity) to 1.0 (high 
spatial complexity). Patches 
were defined with the four-
connected neighborhood

https://www.openmp.org/
https://github.com/dimitri-justeau/intra
https://github.com/dimitri-justeau/intra
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Patch prioritization on a real landscape

To evaluate the behaviour of CWA on real data, we 
conducted a case study on the forest landscape of 
New Caledonia, a tropical archipelago located in the 
South Pacific, and the smallest biodiversity hotspot 
in the world. New Caledonian forests are threatened 
by nickel mining activity, fire, and invasive alien spe-
cies. Moreover, forest fragmentation is known to have 
adverse effects on local tree communities (Ibanez 
et al. 2017). Forest conservation and restoration chal-
lenges are notably critical in mining areas because 
they host many threatened narrow-endemic plant spe-
cies (Lannuzel et al. 2022). Accordingly, we focused 
on one of these mining areas, the Koniambo massif, 

located in the north part of the main island (Grande 
Terre). The forest cover data is a vector layer digitized 
by hand from aerial images ( Birnbaum et  al. 2022, 
see Fig. 8). First, we rasterized this vector data at high 
resolution (7.5 ms) to compute intra-patch connectiv-
ity indices with the intra R package. Then, we vec-
torized back the results and used the Makurhini R 
package (Godínez-Gómez and Correa  Ayram 2020) 
to compute the probability of connectivity index (PC, 
Saura and Pascual-Hortal 2007, ), successively using 
patch area (AREA), CWA[SHAPE], CWA[FRAC], 
and CWA[MDI] as patch attribute. We used the 
default probability threshold, based on the inverse of 
the mean distance between patches, and computed 
the contribution to PC of each patch (dPC). We then 

Fig. 8  (a) Location of New Caledonia, (b) Grande Terre, New Caledonia’s main island, and (c) forest cover of the Koniambo mining 
area (digitized by hand from aerial images)
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produced a patch prioritization for each patch attrib-
ute, according to their corresponding dPC value. 
We first tested the monotony of the CWA-based pri-
oritizations related to the AREA-based one using 
the Spearman rank correlation coefficient. Then, we 
examined the extent to which CWA-based rankings 
locally varied relative to the AREA-based ranking, 
by computing the difference between the CWA-based 
ranks and the AREA-based ranks for each patch.

Results

Response to identical patch sizes distributions with 
different spatial configurations

We illustrated the response of the effective mesh size 
(MESH) and its MESHCWA variants to identical patch 
sizes distributions with different spatial configura-
tions in Fig.  9. As expected, MESH had the exact 
same response with every artificial landscape, as it 
only considers patch areas but ignores their spatial 
configuration. In comparison, MESHCWA reacted to 
different spatial configurations and showed a strong 
monotonic response for each of the three complexity 
indices (see Table 2). The choice of the patch com-
plexity index also significantly impacted the response 
of MESHCWA . First, the use of SHAPE and FRAC 
produced a low value compared to MESH when 
td = 0 (respectively about 28.1% and 74.1% of MESH 

on average). In comparison, MDI preserved a value 
very close to MESH when td = 0 (about 99.7% of 
MESH on average). In addition, the response curves 
induced by SHAPE and FRAC are comparable and 
nearly linear, whereas MDI induced an exponential 
decay curve. Consequently, the use of MDI produced 
values relatively close to MESH when td ∈ [0, 0.8] 
and increasingly lower values than MESH when the 
spatial complexity is high ( td > 0.8).

Impact of the intra-patch connectivity measure in 
patch prioritization on a real landscape

In Table  3, we depicted the overall PC values 
for each patch attribute (AREA, CWA[SHAPE], 
CWA[FRAC], and CWA[MDI]) and the Spearman 
rank correlation between the ranked contributions 

Fig. 9  Response of MESH 
and MESHCWA (used with 
SHAPE, FRAC, and MDI) 
to different landscape 
spatial configurations, for 
a fixed landscape composi-
tion over artificial neutral 
landscapes generated with 
rflsgen. The td parameter 
of rflsgen represents the 
spatial complexity of the 
landscape, ranging from 0 
(low complexity) to 1 (high 
complexity)
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Table 2  Result of the Spearman correlation tests between 
MESHCWA , with SHAPE, FRAC, and MDI as patch complex-
ity indices, and landscape spatial complexity, corresponding to 
the td parameter used for artificial landscape correlation

The Spearman rank correlation coefficients ( � ) and their asso-
ciated p-values indicate a strong monotonic relation for every 
patch complexity index

Fragmentation index � p-value

MESHCWA[SHAPE] − 0.9959493 < 0.001
MESHCWA[FRAC] − 0.9964736 < 0.001
MESHCWA[MDI] − 0.9929258 < 0.001
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produced using CWA-based patch attributes and 
AREA as the patch attribute in PC. First, we observed 
that CWA-based patch attributes resulted in lower 

overall PC values than AREA. CWA[SHAPE] pro-
duced the lowest (lower by a magnitude of 10), while 
CWA[FRAC] and CWA[MDI] respectively produced 
30% and 16% lower values. The ranked contribu-
tions of CWA-based patch attributes all presented a 
strong monotonic correlation with the ranked con-
tribution of AREA as the patch attribute. However, 
as illustrated in Fig. 10, there are many local differ-
ences in the prioritizations, especially for large and 
medium-sized patches. First, CWA[SHAPE] pro-
duced the greatest differences in the prioritization, 
with medium-sized patches being ranked up to 21 
positions better and large patches 28 worse than the 
AREA-based prioritization. Among the 209 patches 
of the landscape, 175 were ranked differently ( ≈84%), 
and only 34 achieved the same rank as the AREA-
based prioritization. Differences in the prioritization 
produced by CWA[FRAC] and CWA[MDI] were 
smaller with respectively 106 ( ≈51%) and 86 ( ≈42%) 
patches ranked differently, up to respectively 4 and 3 

Table 3  Probability of connectivity (PC) in the forest land-
scape of the Koniambo massif in New Caledonia with patch 
area (AREA), CWA[SHAPE], CWA[FRAC], and CWA[MDI] 
as patch attributes

The index was computed using the inverse of the mean dis-
tance between patches as the probability threshold. Spearman 
rank correlation coefficients ( � ) and associated p-value were 
computed by comparing the ranked patch contribution (dPC) 
when CWA[SHAPE], CWA[FRAC], and CWA[MDI] are used 
as patch attributes with the ranking produced with AREA as 
patch attribute

Patch attribute in PC PC � p

AREA 0.0209 – –
CWA[SHAPE] 0.0018 0.9844156 < 0.001
CWA[FRAC] 0.0148 0.9958258 < 0.001
CWA[MDI] 0.0176 0.9955439 < 0.001
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Fig. 10  Impact of using CWA (with SHAPE, FRAC, and 
MDI) as patch attribute in the probability of connectivity index 
(PC) on patch prioritization, all compared to the patch prior-
itization with AREA as patch attribute. Patches are ranked 

according to their contribution to the overall PC index (dPC). 
PC was computed in the forest landscape of the Koniambo 
massif in New Caledonia, using the inverse of the mean dis-
tance between patches as the probability threshold
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positions better, and 5 and 8 worse than the AREA-
based prioritization.

Discussion

Patch area cannot alone reflect the diversity of 
intra-patch connectivity patterns

Patch area has been the most used intra-patch con-
nectivity measure to date. There is a strong ecologi-
cal justification for this choice: patch area measures 
the amount of available habitat within a patch (Fahrig 
2013). However, we have shown in this study that the 
patch area suffers from a major limitation: it cannot 
distinguish different spatial configurations. Therefore, 
using patch area as the intra-patch connectivity meas-
ure in landscape fragmentation and connectivity indi-
ces can lead to biased interpretations: landscapes with 
similar patch area distributions but different spatial 
configurations cannot be distinguished. We notably 
illustrated this pitfall with artificial landscapes (see 
Fig.  7). In response to this limitation, we suggested 
using normalized patch complexity indices to alter 
the amount of available habitat within a patch accord-
ing to its spatial complexity, which gives us the com-
plexity-weighted area (CWA). We have shown that, 
regardless of the patch complexity measure, using 
CWA instead of patch area preserves the mathemati-
cal properties of common fragmentation and connec-
tivity indices such as the effective mesh size (MESH, 
Jaeger 2000), the integral index of connectivity (IIC, 
Pascual-Hortal and Saura 2006), or the probability of 
connectivity (PC, Saura and Pascual-Hortal 2007). 
Using both artificial and real landscapes, we have 
shown experimentally that using CWA in landscape 
indices such as MESH, IIC, or PC allows distinguish-
ing between different spatial configurations and that 
refining intra-patch connectivity measures with CWA 
can impact both overall landscape indices values and 
patch prioritization. The approach proposed in this 
study thus introduces a new family of topo-ecologi-
cal intra-patch connectivity attributes (Ricotta et  al. 
2000).

The many facets of patch complexity

The abstract definition of CWA offers virtually infi-
nite ways of characterizing intra-patch connectivity 

through the free-of-choice normalized patch com-
plexity measure. Several geometrical complexity 
indices are already available, such as the shape index 
(SHAPE) or the fractal dimension (FRAC) that we 
both considered in this study (Patton 1975; Kenkel 
and Walker 1993; McGarigal et  al. 2012). In addi-
tion, we proposed a topological complexity index 
derived from network analysis, the mean detour index 
(MDI). In our experiments on both artificial and real 
landscapes, we have shown that, although preserv-
ing monotonic responses, the path complexity meas-
ure can significantly impact CWA. For example, 
using SHAPE instead of the patch area considerably 
reduced the value of MESH (see Fig.  9). The same 
applied to FRAC but to a lesser extent. The reduced 
range of variation of the inverse of FRAC between 
0.5 and 1 is a possible explanation for this result. By 
contrast, using MDI instead of patch area in MESH 
mainly affected landscapes with high spatial com-
plexity. In practice, the selection of the patch com-
plexity measure should be contextual and supported 
by ecological evidence, such as focal species’ move-
ment and dispersal abilities. As landscape indices’ 
objective is to describe landscape patterns, but a sin-
gle one cannot alone reflect the diversity of ecological 
processes, we thus believe that it is essential to pro-
vide landscape ecologists with a wide variety of indi-
ces. The most difficult challenge, yet the most excit-
ing, is to associate observed intra-patch connectivity 
patterns with ecological processes. In particular, it 
would be particularly relevant to investigate which 
intra-patch connectivity patterns best reflect species-
specific dispersal and movement abilities. Can we 
accurately take into account plants’ dispersal mode 
(e.g. barochoric, anemochorous, zoochorous) within a 
patch? How to represent animals’ perception of patch 
topography according to their locomotion mode? We 
believe the high degree of freedom of CWA to be 
an asset to such fundamental questions of landscape 
ecology.

On the representation of patches as spatial networks

Spatial networks are often used in landscape ecol-
ogy to describe inter-patch connectivity. Indeed, such 
data structures are well adapted to describe connec-
tivity in general as they draw on established theoreti-
cal foundations that provide many ways to analyse a 
network qualitatively and quantitatively. However, 
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very few studies considered spatial network represen-
tations at the patch level for quantifying intra-patch 
connectivity (Tischendorf and Fahrig 2000a; Wu and 
Murray 2008). In this study, we introduced a new 
way to evaluate intra-patch connectivity by represent-
ing a patch as a network of interconnected locations 
and by using a classical measure of spatial network 
analysis, the mean detour index (MDI), which meas-
ures the efficiency of a spatial network (Barthelemy 
2010). In our experiment on artificial landscapes, 
we have shown that MDI’s response to landscape 
patches’ spatial configuration was substantially differ-
ent from geometrical indices’ responses, which indi-
cates that patches can exhibit topological patterns that 
differ from geometrical patterns. Thus, we believe 
that representing patches as a spatial network offers 
methodological perspectives, notably because net-
works are abstract and flexible data structures that can 
adapt to specific needs. For example, instead of a cell-
based patch representation, one could design a net-
work that reflects functional connectivity according 
to focal species, by accounting for dispersal barriers 
and corridors within patches (e.g. creeks, elevation, 
soil). The computation of MDI within such a network 
would be similar, and so would be its interpretation.

Perspectives for conservation and restoration 
planning

Ecological connectivity is essential for species persis-
tence and ecosystem functioning (Taylor et al. 1993; 
Fletcher et al. 2016). Consequently, it must be accu-
rately measured to ensure the success of conservation 
and restoration planning efforts. The inter-patch com-
ponent of connectivity has been the most widely stud-
ied to date. However, intra-patch connectivity is also 
an essential overall connectivity and fragmentation 
component (Tischendorf and Fahrig 2000a, b; Laita 
et  al. 2011; Spanowicz and Jaeger 2019). We have 
shown that alternative intra-patch connectivity meas-
ures to the patch area alone can offer new insights to 
explore fragmentation and connectivity patterns. In 
our experiment on the Koniambo massif in New Cale-
donia, using the probability of connectivity index, our 
CWA-based intra-patch connectivity measures pro-
duced prioritizations that presented strongly mono-
tonic relations with the one obtained using the patch 
area. This result was not surprising as CWA is pro-
portional to the patch area. However, this monotonic 

relation does not imply similar outcomes for man-
agement. Indeed, we have shown that all patch com-
plexity measures impacted the ranking for numerous 
patches ( ≈42% with MDI, ≈51% with FRAC, and ≈
84% with SHAPE). We also observed substantial dif-
ferences in patch ranking, especially with SHAPE 
(from -28 to +21), and the large and medium-sized 
patches were mainly affected. This result shows that 
when such prioritizations are for the purpose of con-
servation planning under limited resources, the proper 
consideration of the intra-patch component of ecolog-
ical connectivity can substantially impact decisions. 
We furthermore suggest that, in landscapes with low 
intra-patch connectivity, investing in intra-patch con-
nectivity restoration might be more beneficial than 
investing in inter-patch connectivity restoration. 
Using proper measures of intra-patch connectivity is 
clearly a prerequisite to addressing such issues. In a 
conservation and restoration planning context, inte-
grating refined intra-patch connectivity measures 
could also help identify the best tradeoffs to foster 
multispecies intra-patch connectivity, as already done 
for inter-patch connectivity (Dilkina et  al. 2017). In 
conclusion, we hope these new intra-patch connectiv-
ity measures will allow a deeper and more compre-
hensive exploration of potential actions to conserve 
and restore ecological connectivity.
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A Appendix

A.1 Patch complexity indices

We now introduce a set of patch complexity indices 
that can be used with CWA . While the first two indi-
ces are geometrical indices already used in landscape 
ecology, the third one is a topological index based on 
a graph representation at the patch level and derived 
from spatial network analysis.

A.1.1 Shape index (SHAPE)

The shape index (SHAPE) is a geometrical patch 
complexity index based on the ratio between the 
perimeter of the patch and the minimum possible 
perimeter of a patch having the same area (Patton 
1975; McGarigal et al. 2012). SHAPE was introduced 
to correct a problem with the perimeter-area ratio, 
which decreases with patch area although the shape 
is maintained constant. For a given patch p, SHAPE 
is defined as:

With Pp the perimeter of patch p, and minPp the min-
imum possible perimeter for a patch having the same 
area Ap as p. When the landscape is represented as 
a raster, with n the side of the largest integer square 
smaller than Ap and m = Ap − n2 , minPp is given by 
(MILNE 1991; Bogaert et al. 2000):

(2)SHAPE(p) =
Pp

minPp

SHAPE is equal to 1 when the patch has the lowest 
possible complexity and increases without limit with 
increased complexity. Then we can use 1∕SHAPE as 
the complexity index into CWA:

A.1.2 Fractal dimension (FRAC)

The fractal dimension (FRAC) is a geometrical patch 
complexity which resulted from the application of 
fractal theory to landscape ecology (Mandelbrot 
1983; Kenkel and Walker 1993). FRAC expresses as 
a ratio between the logarithm of the patch perimeter 
and the logarithm of the patch area, it is given by:

As SHAPE, FRAC is not affected by the perimeter-
area ratio problem. It has a predefined range of vari-
ation which varies between 1 (lowest possible com-
plexity) and 2 (highly convoluted). The inverse of 
FRAC can be used as the complexity measure into 
CWA , as its range of variation, between 0.5 and 1, is 
included in ]0, 1]. However, it is important to remem-
ber that the lower bound of CWA[FRAC](p) is 0.5Ap 
when interpreting the results.

A.1.3 Mean detour index (MDI)

In landscape ecology, spatial network structures are 
often used to describe inter-patch connectivity (Galp-
ern et  al. 2011). However, to the best of our knowl-
edge, intra-patch connectivity was rarely evaluated 
with spatial networks. At the patch scale, a cell-based 
representation of patches is necessary to represent the 
patch as a spatial network. Some authors relied on 
such representations to evaluate connectivity as the 

(3)minPp =

⎧

⎪

⎨

⎪

⎩

4n if m = 0

4n + 2 if n2 < Ap ≤ n(1 + n)

4n + 4 if Ap > n(1 + n)

(4)CWA[SHAPE](p) =
Ap

SHAPE(p)

(5)FRAC(p) =
2 ln(0.25Pp)

ln(Ap)

(6)CWA[FRAC](p) =
Ap

FRAC(p)

http://creativecommons.org/licenses/by/4.0/
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immigration rate between patch cells (Tischendorf 
and Fahrig 2000a), or to represent patches as cell-
based spatial networks but only measuring intra-patch 
connectivity as the number of cells (Wu and Murray 
2008). Here, we represent patches with a cell-based 
spatial network representation (see Fig.  4). Using 
this representation, we use the mean detour index 
(MDI) which measures the efficiency of a spatial net-
work (Barthelemy 2010). Two distance measures are 
needed to compute MDI: a “natural” (e.g. euclidean) 
and a “route” (through the network) distance. The 
first measure represents the best possible distance 
and is a reference to evaluate network efficiency. In 
our case and given a patch p, we use the grid distance 
dg as reference (or Manhattan distance), and the patch 
distance dp as network distance (see Fig. 5). Given a 
pair of cells (i, j) ∈ p2:

• dg(i, j) is the shortest path length between patch 
cells i and j in the grid, regardless of the presence 
of patch cells in the path.

• dp(i, j) is the shortest path length between i and j 
without leaving the patch p.

Using these two distance measures and for pairs of 
cells (i, j) ∈ p2 , the detour index Qp(i, j) is given by:

We then have Qp(i, j) ∈]0, 1] and Qp(i, j) = 1 when the 
network is optimal for the pair (i, j). The global effi-
ciency of the network can be assessed by computing 
the mean value of the detour index for all pairs of dis-
tinct cells within the patch:

With Np the number of cells in the patch p. The mean 
detour index satisfies the necessary conditions to be 
used in CWA:

A.1.4 Robustness to changes in spatial scale

Most landscape indices are sensitive to changes in 
scale. Such behavior is not necessarily problematic 

(7)Qp(i, j) =
dg(i, j)

dp(i, j)
.

(8)MDI(p) =
1

Np(Np − 1)

∑

(i,j)∕i≠j

Qp(i, j).

(9)CWA[MDI](p) = MDI(p) × Ap

and may even be desirable in some cases (e.g. abso-
lute habitat amount). However, because they aim to 
reflect spatial patterns per se (i.e. independently of 
habitat amount), patch complexity indices should, by 
definition, have a low sensitivity to changes in spatial 
scale. Both SHAPE Patton (1975) and FRAC Ken-
kel and Walker (1993) were designed to ensure high 
robustness to changes in spatial scale. However, how 
does MDI, as employed in this article, react to such 
changes? To address this question, we considered 
four different patch shapes: perfect circle, highly com-
pact, moderately convoluted, highly convoluted. From 
a vector representation of these shapes, we produced 
a series of raster patches with widths varying from 
10 pixels to 300 pixels with a step of 10 pixels (see 
Fig.  11). Then, we computed 1/SHAPE, 1/FRAC, 
and MDI for the raster patch series, and evaluated the 
average index value and the standard deviation along 
each series.

We summarized the results in Table 4 and Fig. 12. 
These results clearly indicate that MDI is very robust 
to changes in spatial scale (even more than SHAPE 
and FRAC). It is therefore an appropriate patch spa-
tial complexity measure.

A.2 Integration of CWA into the effective mesh size 
(MESH)

The effective mesh size (MESH) is a fragmentation 
index based on the habitat patch areas distribution 
within the landscape, introduced by Jaeger (2000). 
MESH expresses in area units and describes the prob-
ability that two random points are in the same patch. 
It is given by:

With AL the total landscape area, V the set of patches, 
and Ap the area of patch p. Considering Ap as an 
attribute of the patch p, we can use CWA(p) instead 
of the area to compute MESH:

As for a given patch p, the complexity-weighted 
patch area always verifies CWAp ≤ Ap , MESHCWA 
conserves the mathematical properties of MESH 
described by Jaeger (2000), such as low sensitivity 

(10)MESH =
1

AL

∑

p∈V

A2

p

(11)MESHCWA =
1

AL

∑

p∈V

CWA(p)2
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to very small patches, or area-proportional additivity. 
Note that our approach is, to a certain extent, compa-
rable to Petsas et al. (2021) who transformed MESH 

into the weighted effective mesh size by weighting 
the area component of MESH with D, the compo-
nent density. Nevertheless, because they used MESH 

Fig. 11  Series of artificial 
patches. From top to bot-
tom: patch shapes, from 
left to right: scale (width in 
pixels)

Table 4  Behavior of 1/
SHAPE, 1/FRAC, and MDI 
to spatial scale changes on 
fixed shapes

For each shape and index, 
we computed the average � 
and the standard deviation �

1/SHAPE – � ( �) 1/FRAC – � ( �) MDI – � ( �)

Perfect circle 0.89 (0.0044) 0.97 (0.006) 1 (0)
Highly compact 0.85 (0.009) 0.94 (0.0086) 0.99 ( 2.0 × 10−5)
Moderately convoluted 0.42 (0.019) 0.83 (0.032) 0.90 (0.0088)
Highly convoluted 0.27 (0.036) 0.77 (0.033) 0.74 (0.006)

Fig. 12  Behavior of 1/
SHAPE, 1/FRAC, and MDI 
to spatial scale changes on 
fixed shapes. Shapes were 
fixed and scale was defined 
through varying width from 
10 to 300 pixels with a step 
of 10 pixels
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as a connectivity index instead of a fragmentation 
index, the integration of D concerns patch compo-
nents (i.e. groups of interconnected patches) and then 
only affects the measure of inter-patch connectivity. 
In their modified version of MESH, the patch area 
remains the intra-patch connectivity measure. Con-
sequently, our approach is also compatible with the 
weighted effective mesh size described in Petsas et al. 
(2021). Also, note that our approach can also be used 
in the CBC variant of MESH proposed by Moser 
et al. (2007).

A.3 Integration of CWA into the integral index of 
connectivity (IIC) and the probability of connectivity 
(PC)

The integral index of connectivity (IIC, Pascual-Hor-
tal and Saura 2006) and the probability of connectiv-
ity (PC, Saura and Pascual-Hortal 2007) are two con-
nectivity indices based on a spatial network (or graph) 
representation of patches. In such a representation, the 
landscape is modelled as a network G = (V ,E) , with V 
the nodes and E ⊆ V × V the edges, that is the connec-
tions between the nodes in V. Each patch is then asso-
ciated with a node, and two patches are connected by 
an edge if they satisfy a condition. It is up to the user 
of these indices to determine which condition is the 
best according to their use case (Galpern et al. 2011). 
In practice, structural (e.g. distance threshold) or func-
tional (e.g. species dispersal capacities) conditions 
are chosen according to focal species. In Fig.  6, we 
depict an example of such a network representation 
with a maximum distance threshold. The main differ-
ence between IIC and PC is that PC uses a probabilis-
tic connection model where each edge is labelled with 
a probability (e.g. probability of dispersal between two 
patches) whereas IIC uses a binary connection model. 
These indices are given by:

With AL the total landscape area, V the set of patches 
(or nodes), Ap the area of patch p, lpq the shortest path 

(12)IIC =

∑

p∈V

∑

q∈V

ApAq

1+lpq

A2

L

(13)PC =

∑

p∈V

∑

q∈V ApAqp
∗
pq

A2

L

length (i.e. in the number of edges) between patches 
p and q, and p∗

pq
 the maximum product probabil-

ity of all possible paths between patches p and q. In 
the descriptions of IIC and PC (Pascual-Hortal and 
Saura 2006; Saura and Pascual-Hortal 2007), the 
authors suggested that patch area Ap (and Aq ) can be 
generalized to use any other patch attribute instead 
(e.g. patch quality). The complexity-weighted patch 
area CWA can therefore be seamlessly used within 
IIC and PC as a patch attribute to integrate an intra-
patch connectivity measure that takes into account 
both the habitat availability within the patch and its 
complexity. Given a patch p, Saura and Rubio (2010) 
proposed a decomposition of its contribution to IIC 
and PC into three fractions: intra, flux, and connector. 
The intra fraction corresponds to the intra-patch con-
nectivity of the patch p, and the impact of using CWA 
as the patch attribute is then directly visible. The flux 
fraction corresponds to the area-weighted dispersal 
flux to and from patch p, and will then be impacted 
by CWA through a reduction of the perceived habitat 
area along with increased patch complexity. Finally, 
the connector fraction corresponds to the contribution 
of patch p as a stepping stone between other patches, 
and will not be impacted by CWA as its value only 
depends on the topological position of patch p in the 
network (Saura and Rubio 2010).
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