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Native forest individual-tree 
modelling in Papua New Guinea

Julian C. Fox 1*, Ghislain Vieilledent 2,3 and Rodney J. Keenan 1,4

Abstract

Quantitative study of the permanent sample plot (PSP) database can provide insights into growth, mortality 
and recruitment processes driving forest dynamics. Modelling the dynamics of forest growth and yield pro-
vides opportunities for optimising silvicultural systems and generating accurate growth and yield estimates, 
which are fundamental to sustainable forest management. This paper will outline model development based 
on analysis of a large native forest permanent sample plot database in Papua New Guinea. We quantify 
the competitive influences affecting individual tree growth and mortality, and build predictive models for 
growth and mortality based on a hierarchical Bayesian modelling methodology. This method allows the 
parameterisation of a global model with species-specific parameters; therefore, species-level growth and 
mortality traits are preserved in model predictions, even for rare species. We examine a range of spatial and 
non-spatial competition indexes for the data, and conclude that a simple non-spatial competition index (basal 
area of competing trees within 20 metres of the subject) adequately characterises competitive influences on 
growth and mortality. In future work, species-specific model parameters can be used as the basis of a forest 
simulation system (see http://twoe.org for developments) to improve the design and intensity of selective-
harvesting regimes at the community and the concession level.

Introduction

Tropical forests cover 10% of global land area but 
remain a scientific frontier due to structural and 
biological complexity and high temporal variability 
associated with complex successional processes 
(Chambers et al. 2001). A constraint is the limited 
number of long-term studies quantifying tropical 
forest dynamics, and the impacts of anthropogenic 

and natural disturbances such as harvesting and fire 
(Clark et al. 2001; Lewis et al. 2009). Long-term 
studies, while difficult to maintain, especially in 
developing countries, are essential to the develop-
ment and testing of hypotheses regarding processes 
and rates of ecological recovery following distur-
bance, both anthropogenic and natural (Taylor et al. 
2008). The forests of Papua New Guinea (PNG) are 
structurally diverse and complex, and have rarely 
been studied. The comprehensive permanent sample 
plot (PSP) database provides an opportunity to ame-
liorate this. Quantitative study of the database can 
provide insights into growth, mortality and recruit-
ment processes driving forest dynamics in PNG.

The development of growth and yield models for 
PNG’s native forests has never been a priority for 
the PNG Forest Authority (PNGFA), and this limited 
development has hindered the effective management 
of native forest resources. The only exception to this 
is the work on growth and yield undertaken by Alder 
(1998), who developed a stand-level growth model 
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called PINFORM based on the first remeasurement 
of a PSP dataset. Unfortunately, PINFORM has not 
been routinely applied by PNGFA for forest planning 
or sustainable yield purposes. However, growth and 
yield models can be used for optimising silvicultural 
systems and generating accurate growth and yield 
estimates, which are fundamental to sustainable 
forest management. As part of Australian Centre for 
International Agricultural Research (ACIAR) project 
FST/2004/061, the limited extent of growth and yield 
modelling in PNG has been advanced with the devel-
opment of individual-tree models for competition, 
growth and mortality. In future work, models will be 
developed for recruitment, and will be integrated into 
a forest simulation tool. This tool, under development 
at <http://twoe.org>:
•	 manages and modifies PSP datasets for analysis of 

growth, mortality and recruitment
•	 estimates model parameters using hierarchical 

Bayesian modelling
•	 can be used to simulate forest dynamics.

The individual-tree growth modelling approach 
is sufficiently flexible to accommodate forests with 
virtually any species mixture or size structure. 
Individual-tree models are also age independent, 
making them applicable to uneven-aged stands, as 
are commonly encountered in tropical forests. Many 
alternative growth and yield modelling method-
ologies exist and have been reviewed elsewhere (e.g. 
Vanclay 1994). It is the flexibility of the individual-
tree growth model that has led to its application to 
the native forest resource of PNG, as much of the 
resource exists in mixed-aged, mixed-species stands, 
often of indeterminate age.

Forest utilisation in PNG is increasingly occur-
ring at the community level using small-scale 
sawmills to extract individual trees. This small-
scale use is the basis of Forest Stewardship Council 
(FSC; an international body that outlines social, 
environmental and economic certification require-
ments) certification efforts that aim to empower 
landowners, improve livelihoods, preserve the 
natural environment, and facilitate sustainable 
development (Bun and Scheyvens 2007). To exam-
ine whether these operations are sustainable, growth 
models are required for predicting tree growth at 
the scale of the individual tree. They can then be 
used in community forestry to inform small-scale 
(individual-tree) scenario analysis, species-specific 
carbon sequestration, and the impact of small-scale 
utilisation on carbon stocks.

Individual-tree models characterise the competi-
tive, growth, mortality and recruitment dynamics 
of individual trees—this is challenging in the 
complex and diverse tropical forests of PNG. This 
paper will outline model development based on 
analysis of the PSP network in PNG. We quantify 
the competitive influences affecting individual-tree 
growth, and build predictive models for growth and 
mortality based on a hierarchical Bayesian model-
ling (HBM) methodology (Fox et al. 2011a). One 
of the challenges with statistical analysis of PSP 
data is autocorrelation between measurements. 
Autocorrelation eventuates when spatial, temporal 
or hierarchical variation cannot be captured by 
deterministic model structures (such as a simple 
mean), reducing estimation efficiency and biasing 
hypothesis tests on estimated parameters (Fox et al. 
2001). PSP data have implicit hierarchical struc-
ture—trees are nested within plots that are repeat-
edly measured through time and/or space. HBMs 
are applied here because they can facilitate the 
explicit modelling of autocorrelation (Clark 2005; 
Clark and Gelfand 2006; Cressie et al. 2009). The 
hierarchical Bayesian approach also quantifies the 
response of growth and mortality to competition and 
tree size across the entire tree community. Using 
HBMs with species random effects, the variability 
of the growth/mortality response between all species 
can be estimated, including rare species with few 
observations (Dietze et al. 2008).

Competition indexes have been the subject of 
much attention in the forestry literature. Distance-
dependent indexes (DDIs) use the spatial positions 
of individual trees in their formulations whereas 
distance-independent indexes do not. Because 
DDIs incorporate the spatial pattern of competi-
tors, it should follow that they provide an improved 
quantitative expression of competition. The various 
competition indexes can be organised into several 
groups. DDIs comprise distance-weighted size ratio 
indexes (e.g. Hegyi 1974), area overlap indexes (e.g. 
Bella 1971) and area potentially available indexes 
(e.g. Nance et al. 1987). They consist of functions of 
subject tree attributes compared with the attributes of 
other trees on the plot (e.g. Stage 1973), and stand-
level indexes such as basal area per hectare (BA/
ha) and stems/ha. The various competition indexes 
described above have been quantified for trees 
from the PSP database in PNG, and will be com-
pared in terms of their ability to predict individual 
tree dynamics.



108

Methods

PSP data

Over the past 20 years the Papua New Guinea 
Forest Research Institute (PNGFRI) has established 
and remeasured over 125 PSPs across PNG covering 
all major forest types. Each plot is 1 ha in size and 
is divided into 25 subplots of 20 × 20 m. The spatial 
location, diameter, height and crown characteristics are 
recorded for all trees over 10 cm in diameter. The PSP 
database represents a strong basis for the development 
of individual-tree models. Because individual trees in 
PSPs are spatially mapped, the spatial competitive 
processes governing tree growth can be extricated. 
The PSP data are described in detail elsewhere (Fox 
et al. 2010). The PSP data are a compilation of plot 
remeasurements undertaken by PNGFRI since 1994. 
They have been affected by persistent errors that have 
hindered their usefulness for modelling. A considered 
error correction methodology was required to correct 
persistent errors affecting the PSPs as described in Fox 
et al. (2010). Following this, the PSP dataset was clean 
and ready for analysis. Figure 1 shows the PSP team 
for the Danaru PSPs remeasured in August 2008.

Initially, competition indexes are evaluated 
against individual tree growth for the PSP data. The 

outcomes of this evaluation then inform individual-
tree model development for growth and mortality. 
Prior to evaluation of competition indexes, allometric 
modelling was required to determine species-specific 
relationships between diameter and crown diameter.

Allometric modelling

Diameter – crown diameter (DCD) allometry is 
required to quantify individual-tree competitive 
dynamics. To achieve species-specific DCD models, 
several nonlinear models were fitted that were found 
to perform well for tropical forests in the study 
of Fang and Bailey (1998): the log-linear model 
(Alexandros and Burkhart 1992; equation (1)); the 
hyperbolic model (Huang and Titus 1992; equation 
(2)); and the exponential model (Fang and Bailey 
1998; equation (3)):

H = a + bLogD   (1)

H = aD /(b +D)   (2)

H = a + b 1 e c D Dmin( )( ) (3)

where: a, b and c are parameters estimated for each 
of the tree species; Dmin is the minimum observed 
diameter for the species.

Figure 1. Measurement team for Danaru permanent sample plots, August 2008 
(Photo: Julian Fox).
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Analysis revealed that the hyperbolic model (equa-
tion (4); see Table 2) had a consistently lower mean 
squared error across species represented on PSPs. 
It was thus selected for crown diameter prediction 
on PSPs. This is the same model that was used to 
describe diameter–height (DH) allometry in Fox et 
al. (2010). To predict individual-tree merchantable 
volume, the same model was fitted to diameter-
merchantable height (DMH) allometry. Table 1 
provides species-specific allometric parameters for 
DCD, DH, and DMH models for the 30 most numer-
ous species on the PSPs.

Allometric parameters described in Table 1 are the 
basis of lookup tables in the forest assessment tool 
described in Fox et al. (2011b).

Competition indexes

Distance weighted size ratio competition indexes

The distance-weighted size ratio (DWSR) com-
petition indexes include those that use the distance 
between trees weighted by their respective sizes in 
their formulations. Two of the most successful DWSR 
variants were quantified in this study: those of Hegyi 
(1974) and Newnham (1966). The Newnham index 
(equation (5)) quantifies local density as the sum of 
angles subtended from the subject to either side of 
the stems of competitors. The two DWSR indexes 
are described in Table 2.

The choice of which competitors to include when 
calculating DWSR indexes is an unresolved problem 

Table 1. Individual-tree allometric parameters for the hyperbolic model fitted to diameter–height, diameter – 
merchantable height, and diameter – crown diameter models for the 16 most numerous species on PSPs

Species Sp. code Character DH-a DH-b DMH-a DMH-b DCD-a DCD-b

Calophyllum sp. CAL SP climax 66.1 43.7 30.5 32.7 49.6 217.9
Canarium sp. CAN SP climax 56.1 34.4 30.0 31.6 24.4 77.2
Celtis sp. CEL climax 71.5 49.0 31.7 38.9 22.3 65.9
Cryptocarya sp. CRY SP climax 50.2 30.3 24.6 25.4 18.2 54.0
Dysoxylum sp. DYS SP climax 55.1 38.8 24.2 29.3 19.3 54.2
Ficus sp. FIC SP climax 61.5 49.6 32.3 53.6 27.5 86.8
Garcinia sp. GAR SP climax 57.6 39.3 32.4 40.6 15.5 38.7
Horsfieldia sp. HOR SP climax 65.9 47.1 33.6 37.1 15.9 43.8
Litsea sp. LIT SP climax 55.7 36.4 28.5 32.4 16.5 47.6
Macaranga sp. MAC SP pioneer 52.7 36.5 28.6 40.7 10.9 21.8
Myristica sp. MYR SP climax 51.0 33.0 23.5 24.5 9.1 16.8
Pimeleodendron amboinicum PIM AMB climax 53.3 35.6 26.5 34.4 14.4 38.9
Planchonella sp. PLA SP climax 56.8 33.7 30.0 30.3 21.9 74.9
Pometia pinnata POM SP climax 53.1 32.4 25.5 30.5 21.0 58.7
Syzygium sp. SYZ SP climax 55.7 37.1 27.9 32.3 18.3 56.3
Terminalia sp. TER SP climax 62.4 41.1 38.9 48.0 20.6 56.9

Table 2. Distance-weighted size ratio competition indexes

Index Formulation Author
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Hegyi (1974)
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NEWi = 2 atan
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j=1

ni

 (5)

Newnham (1966)

Note:
ni = total number of competitors for the subject i; Di = diameter at breast height for the subject tree 
i; Dj = diameter at breast height of the jth competitor; Disij = the distance in meters between the 
subject i and competitor j.
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(Burton 1993). To reduce subjectivity in estimates 
of competitor search radius, a methodology was 
used whereby an optimal search radius (OSR) was 
identified mathematically for each species. This could 
also provide insight into the range of the competitive 
dynamic affecting particular rainforest species. By 
examining the relationship between index perfor-
mance and competitor search radius, it was confirmed 
that index performance generally approached a 
maximum value asymptotically. The point at which 
performance first began to level off was then esti-
mated mathematically using a segmented, nonlinear 
equation similar to the spherical semi-variogram 
employed in geostatistics (e.g. Journel and Huijbregts 
1978). This segmented, nonlinear model was fitted to 
characterise the correlation of the index with growth 
and competitor search radius, and can be described 
in equation (6):

Corri = 1.5(sri / ) 0.5(sri
3 / 3)[ ] , sri   

Corri = ,     sri >   
 (6)

where: sri is the search radius (i = 2–20 m at 2 m 
increments), Corri is the correlation between the 
competition index and annual diameter increment for 
search radius i, and α and β are parameters estimated 
using the NLIN procedure in SAS (SAS Institute 

Inc. 1996). The parameter α can be interpreted as 
an estimate of the maximum correlation and β as an 
estimate of the OSR.

Area overlap competition indexes

The area overlap (AO) indexes were formally intro-
duced by Opie (1968), but the most successful formula-
tion was presented by Bella (1971) (equation (7)):

AOi =
ZOij

Zi
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where: AOi is the AO index of Bella (1971) for tree i; 
Zi is the area of the ‘zone of influence’ of the subject 
tree i; ZOij is the area of ‘zone of influence’ overlap 
between the subject i and competitor j. EX is the 
exponent applied to ratios, and previous studies (e.g. 
Bella 1971) have identified the optimal exponent as 
being between 1 and 3.

The AO indexes use a function of the area of overlap 
between a subject’s and a competitor’s ‘zone of influ-
ence’ to quantify competition. Their success depends 
on a suitable estimate of ‘zone of influence’, which 
is defined as the total area over which a tree obtains 
or competes for resources (Opie 1968). A prediction 
of crown area is used to quantify the zone of influ-
ence of each tree. Studies on the zone of influence 

A large Alstonia scholaris (diameter at breast height = 133 cm) overtops the canopy of 
Danaru permanent sample plot (Photo: Julian Fox).
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(e.g. Bi and Jurskis 1996) have found that the area 
over which a tree obtains or competes for resources 
is approximately equivalent to the area enclosed by 
two crown radii. A crown radius prediction for each 
tree in the PSP dataset was generated using the DCD 
allometric model described above.

Area potentially available competition indexes

The area potentially available (APA) indexes, first 
introduced in the forestry literature by Brown (1965), 
are derived from the classical Voronoi diagram, 
which is a continuous tessellation of an area into non-
overlapping polygons. Brown (1965) introduced APA 
indexes to forestry as a means of quantifying the area 
potentially available for growth, and they have since 
been widely adopted as competition indexes. Several 
variants exist, including the weighted (APAW) and 
the weighted and constrained (APAWC). The APAW 
(Moore et al. 1973) weights the position of the per-
pendicular bisector on the line joining a tree to its 
competitor by a ratio of tree sizes. Nance et al. (1987) 
proposed the APAWC to curtail the development of 
large irregular polygons when spatial arrangements 
become irregular. When constructing the tessellation, 
they selected the smaller of the distance to the polygon 
boundary or the output of a constraining function. 
Nance et al. (1987) proposed the constraining function 
based on the predicted crown radius for the subject tree.

Three variants of the APA index are described in 
Table 3.

The APA class of competition indexes is the most 
complex to compute. A SAS macro (SAS Institute Inc. 
1990) was written for efficient computation of all APA 
variants along with DWSR, AO and distance-independ-
ent indexes. SAS macros for quantifying the various 
competition indexes detailed in this study are available 

upon request from the primary author. An example of 
the APAWC for the Krisa PSP plot is shown in Figure 2. 
The spatial irregularity of the PSP plot can be observed.

Alleviating boundary effects

A boundary effect is generated when boundary 
trees are subject to competition from outside the plot 
that is not incorporated in competition indexes. To 
minimise information loss from exclusion of trees 
subject to edge effects, we used a toroidal edge cor-
rection scheme commonly used in spatial statistical 
applications (Ripley 1981). Toroidal edge correction is 
implemented by considering a rectangular spatial array 
as a torus. This can be realised simply by translating 
the spatial arrangement to create eight new adjoining 
arrays. The validity of toroidal edge correction depends 
upon the assumption that boundary trees are subject to 
equivalent competition from both outside and inside 
the plot; this is tenuous for trees close to the boundary 
(i.e. less than 5 m) in an irregularly structured tropical 
forest, but it should be permissible for trees more than 
5 m from the boundary. Therefore, trees within 5 m of 
the boundary were excluded from analysis and toroidal 
edge correction was applied to all other trees.

Distance-independent competition indexes

Distance-independent indexes consist of functions 
of subject tree attributes compared with the attributes 
of other trees on the plot (Stage 1973). They do not use 
spatial information. The summed BA of trees within 
20 m of the subject tree was quantified (BAS). The 
index developed by Stage (1973) was also quantified 
(equation (8)):

DALi = Di
i=1

ni

  (8)

Table 3. Area potentially available competition indexes

Index Weighting function Constraining function Author
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Nance et al. (1987)

Note:
DBij = the distance to the perpendicular bisector located on the straight line between the subject i and competitor j;
APA = area potentially available; W = weighted; WC = weighted and constrained.
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Evaluating competition indexes
Competition indexes were evaluated for their 

ability to predict annual diameter increment in the 
next growing period using two criteria. The first 

criterion was the correlation between the index and 
the annual diameter increment in the next growing 
period. If the relationship between each variable and 
annual diameter increment was found to be nonlin-
ear, a transformation was sought that rendered the 
relationship linear. In these instances the fit of the 
transformed variable was evaluated.

The second criterion was the significance of the 
competition index as a fixed effect in a mixed model 
with BA against annual diameter increment. BA was 
included as a fixed effect to extricate the influence 
of differing stand density on tree growth. A mixed 
model was used to account for the nested depend-
ence (Fox et al. 2001) affecting PSPs; the growth of 
trees within each PSP will be more similar than that 
between the PSPs, as trees on the same plot will be 
subject to the same local environmental conditions, 
and will be of a similar forest type. To account for 
this, a random effect was used for each PSP meas-
urement to ensure correct statistical inference on 
the growth and competition dynamics within and 
between PSP plots (Fox et al. 2001). After selecting 
an optimal competition index, individual tree growth 
(equation (9)) and mortality (equation (10)) models 
can be fitted.

Figure 2. Graphic of the weighted and const-
rained area potentially available 
(APA) index for the Krisa permanent 
sample (PSP) plot

A secondary species, Dendrocnide longifolia, grows quickly to gain access to light on the Danaru 
permanent sample plot (Photo: Julian Fox).
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Individual-tree models

HBM model fitting

A conditional posterior for each parameter was 
obtained using a Gibbs sampler (Gelfand and Smith 
1990) written in C++, and a non-informative flat 
prior (with large variance) was used for each param-
eter. We ran one MCMC of 20,000 iterations for each 
parameter, with a ‘burn-in’ period set to 10,000 itera-
tions and the ‘thinning’ to 1/10. We then obtained 
1,000 estimations for each parameter.

Growth model

( )
[ ] ( )

( )
( )
( )

0 1 2 3

0,k 1,k 2,k 3

1 2

~ Normal 0,

, , ~ Normal 0,

, , ~ Normal 0,
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i

b

b

V

V

b b b V

V r rR

V s s

 (9)

where: Gik is the growth (mm/year) of tree i of spe-
cies k between dates t and t + 1; Di  is the diameter 
(cm) of tree i at date t; Ci is the competition index 
(m2/ha) in the neighbourhood of tree i at date t; β0, 
β1, β2 are global averages on the intercept, the slope 
of D and the slope of C, respectively; β0,k, β1,k, β2,k 
are the species random effects on the intercept, the 
slope of D and the slope of C, respectively.

Mortality model

 (10)

where: Sik is the status (0 = alive, 1 = dead) of tree i of 
species k between dates t and t + 1; Yi is the time interval 
(years) between dates t and t + 1; θ′ik is the mortality 
rate for time interval Yi; θk is the annual mortality rate.

For the mortality model, we included in the 
expression of logit (θik) a residual error term 
εi ∼ Normal(0,V) to account for overdispersion in 
the data (Hadfield 2010). We fixed V to 1. Using 
this parametrisation was convenient as it placed 
the estimation in the linear Gaussian regression 
framework and allowed us to use conjugated priors 
for parameters.

Results

Competition indexes

Optimal competitor search radii

Different trends in correlation across different 
search radii emerged for different species. An exam-
ple of the fitted nonlinear model for Hegyi’s (1974) 
index is shown in Figure 3. For Pometia Pinnata, 
α was estimated as 0.12 and β as 13.7. These can be 
interpreted as an asymptotic correlation of 0.12 and 
an optimal search radius of 13.7 m.

Estimated OSRs for different species are detailed 
in Table 4. It can be observed that some species such 
as Calophyllum have small OSR values (3 m), while 
other species such as Horsfieldia have large OSR 
values (20 m). These results suggest that the range 
of the competitive effect is different among tropical 
species. For example, it could be hypothesised that 
Calophyllum is most affected by competition for light 
among immediate neighbours (competitors within 
3 m) while, for Horsfieldia, competition for light and 
nutrients is more diffuse and occurs over a larger area 
(up to 20 m).

Evaluating competition indexes

Ten competition indexes were quantified for 
approximately 85,000 individual tree measurements 
across the 125 permanent sample plots. The 300 most 
numerous species on PSPs were selected for specific 
study of indexes. Preliminary analysis was used to 
identify a subset of indexes for further study. The 
best performing competition indexes were selected 
on the basis of strength of correlation with tree 
growth across the 300 species. The following subset 
was identified for further study:
•	 DBHOB (diameter at breast height over bark)
•	 BAS (sum of tree BA within 20 m of subject)
•	 SQAPAWC (square root of APAWC)
•	 LNNEW (natural logarithm of NEW)
•	 LNAO1 (natural logarithm of AO with exponent 1)
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The best performing competition index was then 
identified for each of the 300 species. Table 5 shows 
the indexes ranked for the percentage of the 300 
species for which they were optimal (in terms of 
correlation with annual diameter increment). Table 
5 also shows the indexes ranked for the number of 
times they were optimal in terms of fixed-effect 
significance in a mixed model with BA across the 
300 species.

Table 5 demonstrates that no single competition 
index is optimal across the 300 species, and that 
distance-independent indexes such as DBHOB and 
BAS are equally as effective as distance-dependent 
indexes. BAS (28%, 21%) and LNNEW (29%, 29%) 
appear to be optimal most often across the 300 species. 
When BA was included as a fixed effect in a mixed 
model, distance-dependent indexes performed better 
(optimal for 61% of indexes). This may be due to total 
BA characterising stocking differences across PSPs 
and negating the influence of the distance-independent 
index, BAS (28% down to 21%).

Table 4 provides further detailed statistics of 
competition index performance for a subset of the 
16 most observed species.

Individual-tree models

Growth (equation (9)) and mortality (equation 
(10)) individual tree models were fitted to the PSP 
data with random species effects. Fitted models 
resulted in global average parameters (β0, β1, β2) and 

species-specific parameters (β0,k, β1,k, β2,k) describ-
ing growth and mortality processes for each species 
in equation (9) for growth and equation (10) for 
mortality for species k. The growth and mortality of 
individual trees was a function of tree size (diameter) 
and the local competitive environment (sum of BA 
within 20 m of subject). The global model with aver-
age parameters is shown in equation (11) for growth 
and equation (12) for mortality.

log(Gik + 2) = (1.781+ b0,k ) + (0.055+ b1,k )
log(Di) + ( 0.100 + b2,k )log(Ci +1)

 (11)

log(Gik + 2) = (1.781+ b0,k ) + (0.055+ b1,k )
log(Di) + ( 0.100 + b2,k )log(Ci +1)  (12)

Global trends in growth and mortality against 
tree size (Di) and competition (Ci) can be observed 
in equations (11) and (12). Growth increases with 
increasing tree size (positive parameter on Di) but 
decreases with increasing competition (negative 
parameter on Ci). Both these observations are con-
sistent with biological reality in tropical forests. The 
probability of mortality decreases with increasing 
tree size but increases with increasing competition 
(parameters in equation (12)). Again, these observa-
tions are consistent with biological reality.

Species-specific parameters such as b1,k in equa-
tions (11) and (12) allow each species to express its 
individual traits with respect to growth and mortality. 

Figure 3. Fitted nonlinear model for estimating optimal competitor search radius 
for Pometia pinnata
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Species-specific model parameters for the 16 most 
numerous species on PSPs, as well as predictions of 
growth and mortality for trees under conditions of 
low (10 m2/ha) and high (50 m2/ha) competition are 
shown in Table 6. All predictions are for medium-
sized trees (40 cm dbh).

It can be observed that growth under low competi-
tion is always higher than under high competition, 
and this makes biological sense. Similarly, the prob-
ability of mortality under low competition is always 
lower than under high competition. For Macaranga, a 
pioneer species, the probability of mortality is twice 
as high under conditions of high competition relative 
to low competition.

Discussion

Tropical forests are characterised by a high diversity 
of woody species, and no universally applicable 

species groupings exist that capture the continuum 
of growth, mortality and recruitment dynamics (Clark 
and Clark 1999). However, there is a need to group 
species for the development of forest growth models, 
as grouping similar species increases the sample 
size, thus reducing parameter variance, and may 
result in fewer and more frugal models that can be 
more easily applied in forest-management contexts. 
It is also important for the ecological insights it can 
offer on species growth habits. Ever since Whitmore 
(1975) first described tropical tree functional groups 
(fast-growing shade-intolerant pioneers, and slower 
growing shade-tolerant climax species), researchers 
have been attempting to group species using a variety 
of strategies, as reviewed by Gourlet-Fleury et al. 
(2005). Future work should explore if competition 
indexes can be used for species classification. For 
example, OSR values could be related to the shade-
tolerance of different species. Species with small 

Table 5. Percentage of species for which each competition index was optimal

Competition 
index

Correlation—percentage of  
species optimal

Mixed model—percentage of 
species optimal

DBHOB 14 18
BAS 28 21
SQAPAWC 15 13
LNNEW 29 29
LNAO1 14 19

Cultural immersion is likely to occur when undertaking forest assessment in remote 
areas of Papua New Guinea. Here, Heidi Zimmer is inducted as a ‘Simbu girl’ after 
spending time with the Kgwan community of Simbu province (Photo: Julian Fox).
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OSR values that are most affected by competition 
for light would be expected to be shade intolerant, 
while species with large OSR with a more diffuse 
competitive affect would be shade tolerant.

Table 4 also provides insights into tree attributes 
that could be used as a basis for species group-
ing. Wood density, growth rate and potential size 
have been used in other studies to group species. 
Macaranga is a pioneer species with the largest 
growth rate (0.96 cm/year), smallest potential size 
(22.8 cm), lowest wood density (300 kg/m3) and 
strongest correlation for competition indexes (0.27). 
This is congruent with previous findings that pioneer 
species tend to be fast growing, have small potential 
size and low wood density, and tend to be shade 
intolerant with a life cycle characterised by rapid 
growth to capitalise on canopy gaps. Intolerance to 
shade from nearby trees confirms the importance of 
competition indexes in explaining future growth. In 
contrast, Pometia pinnata (taun) is a climax species 
with a slower growth rate (0.67 cm/year), large poten-
tial size (54.5 cm), denser wood (580 kg/m3) and 
weaker correlation for competition indexes (0.16). 
Again, this is congruent with climax species being 
slower growing, having larger potential size and 
denser wood, and being more tolerant of shade from 
nearby trees. More tolerance to competition explains 
the weaker correlation of competition indexes with 
future growth. The local spatial arrangement of soil 
fertility and topographic, geologic and climatic fac-
tors will be more important in explaining growth 
for shade-tolerant species. Other species in Table 
4 fall on the continuum between pioneers such as 
Macaranga and climax species such as Pometia 
pinnata. This suggests that competition response, as 
characterised by competition indexes, could be used 
as an additional attribute for species groupings in 
tropical forests.

This analysis suggested that no single competition 
index is dominant, with indexes BAS and LNNEW 
performing well. The optimal index for each species 
explained only a modest amount (14–27%) of the 
variability in diameter increment. However, indexes 
were highly significant when evaluated in a mixed 
model with BA/ha. Failure to identify a single index 
as optimal in the mixed tropical forests of PNG 
could be associated with variability in competition 
response across the 300 species. Shade-intolerant 
species will compete strongly with first-order neigh-
bours for light and nutrients. The SQAPAWC most 
accurately characterises these first-order interactions. 

The LNAO1 and LNNEW competition indexes may 
perform better for more shade-tolerant species, as 
competition for light and nutrients would be more 
diffuse, less intense, and would occur over a larger 
area. Following this hypothesis, distance-independent 
indexes such as BAS and DBHOB would perform 
well for very shade-tolerant species for which the 
location and size of nearby competitors is relatively 
unimportant. Future work should attempt to align the 
shade tolerance of different species with the perfor-
mance of different competition indexes.

Diameter performed well as a predictor of 
growth—better than competition indexes for 14% and 
18% of species. This is in agreement with previous 
studies (Lorimer 1983). Diameter can be considered 
a historical log of past competitive interactions, 
genotypic differences and localised environmental 
heterogeneity, and therefore tends to be strongly 
correlated with future growth.

Tree growth is a complex process. It is influenced 
by an intricate network of above- and below-ground 
competitive interactions as well as the local spatial 
arrangement of soil fertility and topographic, 
geologic and climatic factors. The vast majority 
of current competition indexes and growth models 
remain overly simplified (Fox et al. 2001). This 
results in large amounts of unexplained variability, 
and growth modellers have come to accept this as an 
‘occupational hazard’ (Burkhart and Gregoire 1994). 
Competition indexes explained, at best, 25% of the 
variability in individual tree growth in mixed tropi-
cal forest in PNG. Future work requires insights into 
this unexplained variability that can improve growth 
model performance. Despite these shortcomings, the 
competition indexes examined here, and the insights 
into competitive dynamics they provided, can guide 
further growth model development for mixed tropical 
forest in PNG.

Work described in this paper represents an initial 
investigation of competition index selection in tropi-
cal forests, and application of individual-tree-based 
models with demographic hierarchical Bayesian 
models, including species random effects. Results 
suggest that the approach shows promise. Future 
work should fit a recruitment model and use species-
specific competition indexes in growth/mortality 
models.

The forest assessment tool is described elsewhere 
and is based on a stratified random variable-radius 
plot inventory (Fox et al. 2011b). The assessment 
tool incorporates lookup tables that facilitate the 
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calculation of plot- and estate-level above-ground 
live biomass (t/ha) and merchantable volume (m3/ha). 
In future work this forest assessment tool can used 
as a basis for the individual-tree growth and yield 
module, which can then be used to simulate forest 
development into the future. Data from the forest 
assessment tool can be read into the forest simula-
tion tool, which is under development at <http://twoe.
org>. Using individual-tree HBM model parameters 
estimated from the PSPs, assessment data can be 
used as the basis of a simulation. Lookup tables 
for species-specific HBM parameters for growth, 
mortality and recruitment models are available from 
the primary author. Each tree measured in the assess-
ment therefore becomes a tree in the simulation that 
is subject to perturbations from growth and possible 
mortality into the future. New trees eventuate in the 
simulation from the recruitment model that uses tree 
density and species present on each plot to create a 
probability of recruitment.

A simple tree-level simulator housed in accessible 
software (http://twoe.org) can assist community-
level decision-making with regards to the design 
and intensity of selective-harvesting regimes. For 
example, after the forest assessment is complete, a 
simulation of a harvesting event can be implemented 
with different size limits, cutting intensities and 
species. For community forest management, this 
will allow communities to maximise returns from 
harvesting while preserving other forest values. 
Small-scale, high-value utilisation scenarios can be 
effectively explored using such models. Utilisation 
below unsustainable levels, which has been set in the 
simulator according to species-specific growth rates, 
will ensure that high-end products can be harvested 
in community areas in perpetuity.

PNGFA is moving to a new preharvest inventory 
method based on a stratified random variable-radius 
plot inventory that will replace the 1% stripline inven-
tory, which is both inefficient and biased. Therefore, 
PNGFA can populate the assessment tool with inven-
tory information and run scenarios for large-scale 
harvesting using software available at <http://twoe.
org>. The scenarios can help identify appropriate and 
sustainable harvesting in terms of size limits, species 
mixes and cutting cycles. Currently, a default size 
limit of 50 cm is used on a 35-year cutting cycle. It 
is intended that the assessment and modelling tools 
developed as part of ACIAR project FST/2004/061 
can help refine this approach for more sustainable 
forest harvesting.
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