GAMBAS - Tuesday, June 16th 2020 - Zoom meeting

jSDM R package for Joint Species Distribution Models

Ghislain VIEILLEDENT and Jeanne CLEMENT

Cirad, UMR AMAP, Montpellier, FRANCE AMAP, **Univ Montpellier**, CIRAD, CNRS, INRAE, IRD, FRANCE

Comparison with boral/JAGS 00000

Perspectives 0000

Plan

- State of the art
- Obectives
- 2 The jSDM R package
 - Joint Species Distribution Models
 - Model specification
 - Rcpp* packages

- 3 Comparison with boral/JAGS
 - boral R package
 - Data-sets
 - Results
- 4 Perspectives
 - Additional functionalities
 - SDM vs. JSDM

Comparison with boral/JAGS 00000

Perspectives 0000

Plan

- State of the art
- Obectives
- 2 The jSDM R package
 - Joint Species Distribution Models
 - Model specification
 - Rcpp* packages

- 3 Comparison with boral/JAGS
 - boral R package
 - Data-sets
 - Results
- Perspectives
 - Additional functionalities
 - SDM vs. JSDM

 $\begin{array}{l} \mbox{Comparison with boral/JAGS} \\ \mbox{OOOOO} \end{array}$

Perspectives 0000

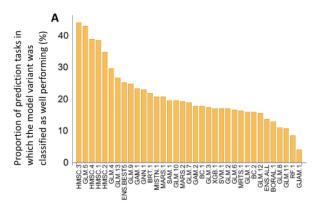
Available R packages for JSDMs

Community of coexisting R/Python packages

- boral (Warton and Hui)
- HMSC (Ovaskainen and Tikhonov)
- gjam (Clark and Gelfand)
- BayesComm (Golding)
- s-jSDM (Hartig and Pichler)

• . . .

Wilkinson, D. P.; Golding, N.; Guillera-Arroita, G.; Tingley, R.; McCarthy, M. A.; Peres-Neto, P. 2018. A comparison of joint species distribution models for presence-absence data *Methods in Ecology and Evolution*, **10** :198-211. [doi : 10.1111/2041-210x.13106].


Pichler, M.; Hartig F. 2020. A new method for faster and more accurate inference of species associations from novel community data. *arXiv* pre-print, https://arxiv.org/abs/2003.05331.

Comparison with boral/JAGS

Perspectives 0000

Limitations

- Computational speed (boral, HMSC)
- Model specifications (BayesComm, s-jSDM)
 - eg. site random effects, functional traits, phylogenetic data
- Heterogenous model performance (HMSC, boral, gjam)

Norberg et al. 2019

Comparison with boral/JAGS 00000

Perspectives 0000

Obectives of the jSDM R package

- Make our hands dirty to understand better the JSDM functioning
- Optimized code for fast MCMC computations
- User friendly : package, functions, articles, vignettes
- A base for testing a large variety of models :
 - occurrence and count data (Bernoulli/Binomial Poisson/Neg-Binomial)
 - probit/logit link function for occurrences
 - functional traits and phylogenetic data
 - species and site random/fixed effects
 - presence-only data
- Companion for the hSDM R package, hierarchical one-species distribution models (mixed models, imperfect detection, spatial autocorrelation) https://ecology.ghislainv.fr/hSDM/

The jSDM R package

Comparison with boral/JAGS 00000

Perspectives 0000

Plan

- State of the art
- Obectives
- 2 The jSDM R package
 - Joint Species Distribution Models
 - Model specification
 - Rcpp* packages

- 3 Comparison with boral/JAGS
 - boral R package
 - Data-sets
 - Results
- Perspectives
 - Additional functionalities
 - SDM vs. JSDM

The jSDM R package

Comparison with boral/JAGS $\tt OOOOO$

Perspectives 0000

JSDM utility

- Fit species distribution models
- Accounting for species co-occurrences

• Can be used to explain/predict species range and produce species range map

Field records and maps of environment

Map of probability species is present

The jSDM R package

Comparison with boral/JAGS 00000

Perspectives 0000

Data to fit JSDM

- Species presence/absence on sites
- Environmental variables (climate, lancover) at each site

Sites	Sp1	Sp2	 Sp_nsp	X1	X2	 X_nvar
Site1	0	0	 1	-0.21	-1	 -1.24
Site2	0	1	 1	0.25	0	 -0.53
			 			 -
Site_nsite	1	0	 1	0.82	1	 0.34

Perspectives 0000

Statistical model

$$y_{ij} = \begin{cases} 0 & \text{if species } j \text{ is absent on site } i \\ 1 & \text{if species } j \text{ is present on site } i. \end{cases}$$

We assume $y_{ij} \sim \mathcal{B}ernoulli(\theta_{ij})$, with :

 $\text{probit}(\theta_{ij}) = \alpha_i + \beta_{0j} + X_i \beta_j + W_i \lambda_j$

- $lpha_i$: site random effects, with $lpha_i \sim \mathcal{N}(0, V_lpha)$
- X_i : known environmental variables on site *i*
- W_i : latent variables for site $i \beta_j, \lambda_j$: species fixed effects

Latent variables W_i : missing predictors + main axes of covariation across taxa (see Warton et al. 2015 <doi: 10.1016/j.tree.2015.09.007>).

The jSDM R package

Comparison with boral/JAGS 00000

Perspectives 0000

Statistical model

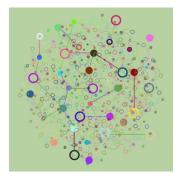
The previous latent variable model (LVM) :

 $\text{probit}(\theta_{ij}) = \alpha_i + \beta_{0j} + X_i \beta_j + W_i \lambda_j$

is equivalent to a multivariate probit regression (MPR) :

$$probit(\theta_{ij}) = \alpha_i + \beta_{0j} + X_i\beta_j + u_{ij}$$

with $u_{ij} \sim \mathcal{N}(0, \Sigma)$ (where Σ is the variance-covariance matrix) and with the constraint that $\Sigma = \Lambda \Lambda'$ (where Λ is the full matrix of factor loadings, with the λ_i as its columns).


The jSDM R package

Comparison with boral/JAGS $\tt OOOOOO$

Perspectives 0000

Complexity of the model

- Multi-dimensionality : parameters α_i for sites and β_i, λ_i for species
- Non Gaussian process
- Latent-variables W_i
- Mixed model with site random effects $\alpha_i \sim \mathcal{N}(0, V_{\alpha})$

Comparison with boral/JAGS

0

iSDM R package

jSDM	0.1.0	
------	-------	--

Get started Reference Articles -

Change log

jSDM R Package

Package for fitting joint species distribution models (jSDM) in a hierarchical Bayesian framework (Warton et al. 2015), The Gibbs sampler is written in C++, It uses Rcpp, Armadillo and GSL to maximize computation efficiency,

System requirements

Make sure the GNU Scientific Library (GSL) is installed on your system.

Installation

Install the latest stable version of jSDM from CRAN with:

install.packages("iSDM")

Or install the development version of iSDM from GitHub with:

devtools::install github("ghislainv/jSDH")

References

Warton, D.I., Blanchet, F.G., O'Hara, R.B., Ovaskainen, O., Taskinen, S., Walker, S.C. & Hui, F.K. (2015) So many variables: Joint

- https://ecology.ghislainv.fr/jSDM
- Made with Rcpp* packages

Links

Browse source code at https://github.com/ghislainy/ISDM

Report a bug at https://github.com/ghislainv/jSDM/issues

License

GPL-3 | file LICENSE

Developers

Ghislain Vieilledent Author, maintainer (D)

Jeanne Clément

Author 😰

🕖 cirad Copyright holder, funder

Dev status

build passing

CRAN 0.1.0

DOI 10.5281/zenodo.3253460

downloads 87/month

The jSDM R package

Comparison with boral/JAGS 00000

Perspectives 0000

Rcpp R package

- **Rcpp** is an R package to extend R with C++ code
- Main advantage : C++ is fast, it accelerates R (see next sections)
- Written by Dirk EDDELBUETTEL and Romain FRANCOIS
- http://www.rcpp.org/

The jSDM R package

Comparison with boral/JAGS 00000

Perspectives 0000

Simple Rcpp example

C++ code (in file Code/addition.cpp)
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]] int addition(int a, int b) { return a + b; }

R code

```
Rcpp::sourceCpp("Code/addition.cpp")
addition(2, 2)
```

[1] 4

Perspectives 0000

Rcpp advantages

Thanks to Rcpp::sourceCpp()

- Compile the C++ code
- Export the function to the R session
- \bullet Direct interchange of R objects (including S3, S4) between R and C++
- ... (many more, see vignette("Rcpp-package"))

In an R package

- Rcpp.package.skeleton() to generate a new Rcpp package (modifying DESCRIPTION and NAMESPACE)
- Rcpp::compileAttributes() scans the C++ files for Rcpp::export attributes and generates the code required to make the functions available in R.

Comparison with boral/JAGS $\tt OOOOOO$

Perspectives 0000

GSL and RcppGSL for fast random draws

GNU Scientific Library

- Numerical library for C and C++ programmers
- Reliable random number generator algorithms
- Thoroughly tested and fast random number distributions
- Linear algebra (matrices and vectors)
- https://www.gnu.org/software/gsl/

RcppGSL

- Interface between R and GSL
- Using Rcpp to interface R and C
- http://dirk.eddelbuettel.com/code/rcpp.gsl.html

Comparison with boral/JAGS $\tt OOOOOO$

Perspectives 0000

GSL random number distributions

- GSL v2.6 includes **38 random number distributions** (see GNU GSL)
- It's easy to implement additional random number distributions from the GSL base distributions (e.g. truncated normal distribution)
- For comparison, R API includes "only" 24 random number distributions (see Writing R Extensions)
- Random draws are faster with GSL than with R (eg. gsl_ran_gamma() vs. R::rgamma())

Armadillo and RcppArmadillo for high-performance linear algebra

- Armadillo
 - C++ library for linear algebra and scientific computing
 - Provides high-level syntax and functionality : speed and ease of use
 - Classes for vectors, matrices and cubes
 - Matrix operations, matrix decomposition, linear model solver, etc.
 - http://arma.sourceforge.net/

RcppArmadillo

- Interface between R and Armadillo
- $\bullet~$ Using Rcpp to interface R and C++
- http://dirk.eddelbuettel.com/code/rcpp.armadillo.html

The jSDM R package

Comparison with boral/JAGS 00000

Perspectives 0000

GSL and Armadillo licenses

- Licenses : GNU General Public License, Apache License 2.0 for Armadillo
- Free software licenses : we can use, modify and redistribute these softwares

Comparison with boral/JAGS

Perspectives 0000

Plan

- State of the art
- Obectives
- 2 The jSDM R package
 - Joint Species Distribution Models
 - Model specification
 - Rcpp* packages

- Comparison with boral/JAGS
 - boral R package
 - Data-sets
 - Results
- Perspectives
 - Additional functionalities
 - SDM vs. JSDM

The jSDM R package

Comparison with boral/JAGS ○●○○○ Perspectives 0000

boral R package

- R package interfacing R with JAGS for fitting Joint Species Distribution Models
- JAGS is Just Another Gibbs Sampler : http://mcmc-jags.sourceforge.net/
- Approach used in Warton et al. 2015 : <doi : 10.1016/j.tree.2015.09.007>
- boral by Francis K.C. Hui and JAGS by Martyn Plummer

The jSDM R package

Comparison with boral/JAGS $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Perspectives 0000

Data-sets

dataset	nsite	nsp	nobs	nΧ	nlat	npar	nmcmc
Simulated	300	100	30000	2	2	1400	35000
Mosquitos	167	16	2672	13	2	757	35000
Eucalyptus	458	12	5496	7	2	1494	35000
Frogs	104	9	936	3	2	366	35000
Fungi	800	11	8800	12	2	2565	35000

Comparison results

Compilation time (in minutes)

	Simulated	Mosquitos	Eucalyptus	Frogs	Fungi
boral	96.9	5.8	17.2	1.2	38.6
jSDM	7.0	1.3	1.8	0.3	4.1

jSDM is 4 to 14 times faster than boral/jags.

Root-mean-square error

Computed for probit(θ_{ij}) with the simulated data-set.

	boral	jSDM
RMSE	1.8	0.6

Deviance

	Simulated	Mosquitos	Eucalyptus	Frogs	Fungi
boral	40486	6936	8779	884	12871
jSDM	15651	1231	1922	150	1982

The jSDM R package

Comparison with boral/JAGS ○○○○● Perspectives 0000

Conclusion

- Small data-sets and simple models : R, *BUGS, JAGS, Stan, INLA, MCMCgImm
- Large data-sets **or** complex hierarchical models : R + Rcpp + RcppGSL + RcppArmadillo
- With Rcpp* packages, the Gibbs sampler can typically be written in about half a day
- Code is reusable and easily packageable
- Tools with incomparable efficiency for statisticians

Comparison with boral/JAGS 00000

Perspectives

Plan

- State of the art
- Obectives
- 2 The jSDM R package
 - Joint Species Distribution Models
 - Model specification
 - Rcpp* packages

- 3 Comparison with boral/JAGS
 - boral R package
 - Data-sets
 - Results
- Perspectives
 - Additional functionalities
 - SDM vs. JSDM

Comparison with boral/JAGS 00000

Perspectives

Additional functionalities

- Count data (Poisson/Negative-Binomial)
- Logit link function for occurrences
- Functional traits and phylogenetic data
- Species and site random/fixed effects
- Presence-only data
- Spatial autocorrelation for α_i and W_i

The jSDM R package

Comparison with boral/JAGS $\tt OOOOO$

Perspectives

SDM vs. JSDM

See notebook

... Thank you for attention ...

🝠 @ghislainv

https://ecology.ghislainv.fr/presentations ghislain.vieilledent@cirad.fr | jeanne.clement16@laposte.net