MELANOBS workshop – Noumea, April 2024

-ForestAtRisk-

Spatial forecasting of forest cover change in the humid tropics over the 21st century

Ghislain VIEILLEDENT^{1,2} Christelle VANCUTSEM² Frédéric ACHARD²

[1] Cirad UMR AMAP, [2] EC JRC Bioeconomy unit

Plan

Results 00000000

- Context
- Objectives
- Approach
- Methods
 - Models
 - Spatial variables
 - Forecast

- 3 Results
 - Forest refuge areas
 - Carbon emissions
 - Effects of PA and roads
- Discussion
 - Uncertainty analysis
 - Alternative scenarios
 - Other perspectives

Plan

Results 00000000

Introduction

- Context
- Objectives
- Approach

Methods

- Models
- Spatial variables
- Forecast

- 3 Results
 - Forest refuge areas
 - Carbon emissions
 - Effects of PA and roads
- 4 Discussion
 - Uncertainty analysis
 - Alternative scenarios
 - Other perspectives

Tropical deforestation

SCIENCE ADVANCES | RESEARCH ARTICLE

ENVIRONMENTAL STUDIES

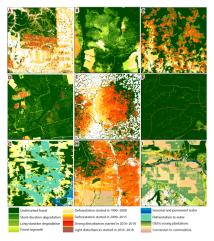
Long-term (1990–2019) monitoring of forest cover changes in the humid tropics

C. Vancutsem¹*, F. Achard¹, J.-F. Pekel¹, G. Vieilledent^{1,2,3,4}, S. Carboni⁵, D. Simonetti¹, J. Gallego¹, L. E.O. C. Aragão⁶, R. Nasi⁷

Vancutsem et al. 2021, Science Advances, doi :10.1126/sciadv.abe1603

- Tropical Moist Forest (TMF)
- 1990–2019 : Annual deforestation, degradation, regeneration

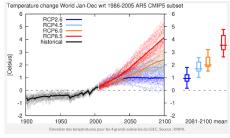
Tropical deforestation


- Full Landsat archive (1982–2019), 30m pixel, time-series analysis
- Classification tree based on expert knowledge
- Tropical deforestation was underestimated (-33% in 2000–2012, Hansen et al. 2013)
- Maps and data : https://forobs.jrc.ec.europa.eu/TMF/

Tropical deforestation

• Precise enough to visually identify the causes of deforestation (logging, fires, agriculture)

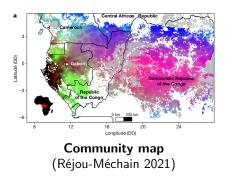
Forecasting deforestation

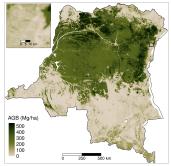

- About 7 Mha of tropical moist forest are disappearing each year (size of Ireland)
- At this rate, will tropical forests still exist in 2100?
- If yes, where will they be located?
- What will be the consequences of future deforestation on biodiversity and carbon emissions ?

Forecasting deforestation

Why is it a timely question?

- Alert decision makers
- Carbon emissions scenarios (ightarrow IPCC)
- Biodiversity scenarios (\rightarrow IPBES)
- Local scale : systematic conservation planning (protected area network, REDD+)
- $\bullet~\mbox{Modelling} \to \mbox{main spatial drivers of defore$ $station}$


IPCC scenarios


Discussion 00000

Forecasting deforestation spatially

Why is **spatial** forecasting important?

Because both biodiversity and carbon stocks vary strongly in space.

AGB map in DRC

Approach

- i. Consider tropical moist forest in 92 countries (119 study areas)
- ii. Estimate the current deforestation rate and uncertainty in each country
- iii. Model the spatial risk of deforestation from environmental factors
- iv. Forecast the deforestation assuming a business-as-usual scenario
- v. Consequences in terms of biodiversity and carbon emissions

The 119 study areas in the 3 continents

Plan

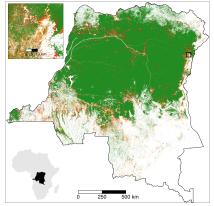
Results 00000000

Introduction

- Context
- Objectives
- Approach

2 Methods

- Models
- Spatial variables
- Forecast


- 3 Results
 - Forest refuge areas
 - Carbon emissions
 - Effects of PA and roads
- 4 Discussion
 - Uncertainty analysis
 - Alternative scenarios
 - Other perspectives

Discussion 00000

Modelling the intensity of deforestation

- 10 values of annual deforested area (ha/yr) in 2010–2020 per country
- (Brazil : per state, India : per region)
- Mean deforestation rate (ha/yr) in 2010–2020 per country
- Uncertainty around the mean (95% confidence interval)

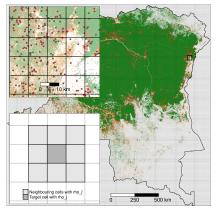
Past deforestation 2000–2010–2020 in DRC

Discussion 00000

Modelling the intensity of deforestation

Country – study area	fc2010 (Kha)	fc2020 (Kha)	d (ha/yr)	d' (ha/yr)	<i>d</i> " (ha/yr)
America					
Antigua and B.	4	3	55	24	87
Bahamas	122	103	2,044	1,013	3,075
Barbados	4	3	73	21	125
Belize	1,337	1,206	12,735	7,865	17,605
Bolivia	30,657	28,671	203,506	127,518	279,493
Brazil – Acre	13,292	12,824	48,076	41,217	54,936
Brazil – Alagoas	100	89	1,196	730	1,663
Brazil – Amapa	11,589	11,457	14,934	11,766	18,101
Brazil – Amazonas	146,956	145,361	164,083	$117,\!648$	210,518

Examples of mean deforestation rate with uncertainty


Discussion 00000

Modelling the spatial risk of deforestation

A logistic regression model with $\ensuremath{\mathsf{iCAR}}$ process

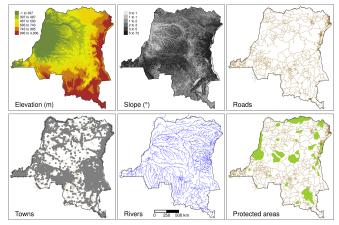
$$y_i \sim \mathcal{B}ernoulli(\theta_i)$$

 $ext{logit}(\theta_i) = lpha + X_i eta +
ho_{j(i)}$
 $ho_{j(i)} \sim \mathcal{N}ormal(\sum_{j'}
ho_{j'}/n_j, V_{
ho}/n_j)$

(NB : We compared this model with a simple GLM and a Random Forest model using a cross-validation procedure)

Square grid of 10km cells over DRC

Spatial variables


• Height explanatory variables

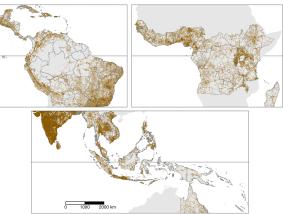
Product	oduct Source Variable derived		Unit	Resolution (m)	Date	
Forest maps (2000-2010- 2020)	Vancutsem et al. 2021	distance to forest edge	m	30	-	
		distance to past deforestation	m	30	-	
Digital SRTM v4.1 Elevation CSI-CGIAR Model		elevation	m	90	-	
		slope	degree	90	-	
Highways	OSM- Geofabrik	distance to road	m	150	March 2021	
Places		distance to town	m	150	March 2021	
Waterways		distance to river	m	150	March 2021	
Protected areas	WDPA	presence of protected area	-	30	March 2021	

Methods

Results 00000000 Discussion 00000

Spatial variables

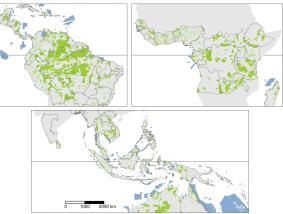
Spatial explanatory variables in DRC



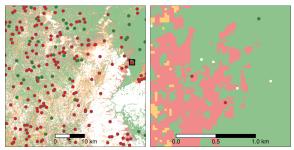
Methods

Results 00000000 Discussion 00000

Roads


- OpenStreetMap (OSM)
- "motorway", "trunk", "primary", "secondary" and "tertiary" roads
- 3.6 million roads from OSM

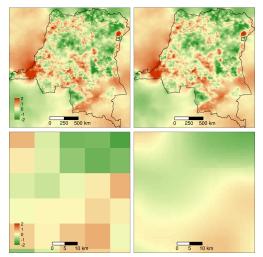
Protected areas


- PA status : "Designated", "Inscribed", "Established", or "Proposed" before 1st January 2010
- 85,000 protected areas from WDPA

Sampling

One word on sampling :

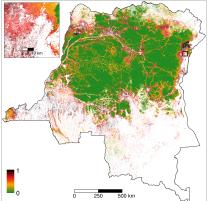
- Stratified sampling between deforested/non-deforested pixels in 2010–2020
- Total number of points proportional to the forest cover in 2010 (from 20,000 to 100,000 points per study area)
- Huge data-set of 3.2 M forest pixels (~288 Kha of forest)



Methods

Results 00000000 Discussion 00000

Spatial random effects

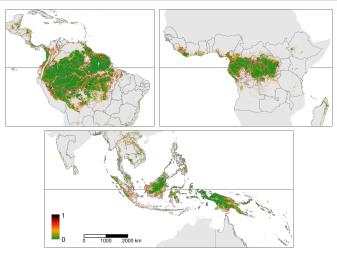


Interpolation of spatial random effects at 1km in DRC

Discussion 00000

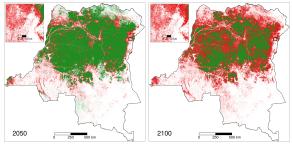
Spatial probability of deforestation

We use the fitted model to compute the spatial probability of deforestation.


Relative spatial probability of deforestation in DRC for the year \$2020\$

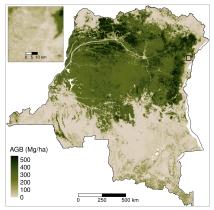
Methods

Results 00000000 Discussion 00000


Spatial probability of deforestation

Pantropical map of the spatial probability of deforestation https://forestatrisk.cirad.fr/maps.html

Future forest cover


- Total deforested area D (ha) in a given period of time Y (yr) : $D = d \times Y$, with d the annual deforested area (ha/yr).
- Number of pixels to be deforested : n = D/0.09, 0.09 ha being the pixel area.
- The *n* pixels with the highest deforestation probabilities are considered deforested in that period of time.

Projected deforestation in 2020–2050 and 2020–2100 in DRC

Future carbon emissions

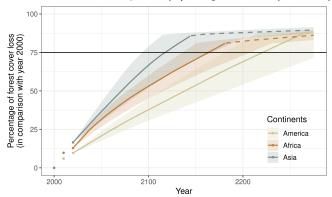
- Projected deforestation for years 2030, 2040, ..., 2100.
- We combine the maps of the projected deforestation with the (2000–2010) forest carbon map by Avitabile 2016 GCB (1km resolution).

Aboveground biomass in DRC

- forestatrisk Python package
- Process large rasters by blocks
- Several statistical models : iCAR, GLM, RF, etc.
- Set of functions for sampling, modelling, forecasting, validating

Website : https://ecology.ghislainv.fr/forestatrisk Article : **Vieilledent** 2021, *JOSS*, doi : 10.21105/joss.02975 Plan

Introduction

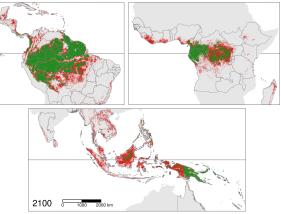

- Context
- Objectives
- Approach
- 2 Metho
 - Models
 - Spatial variables
 - Forecast

- 3 Results
 - Forest refuge areas
 - Carbon emissions
 - Effects of PA and roads
- 4 Discussion
 - Uncertainty analysis
 - Alternative scenarios
 - Other perspectives

Tropical forest cover loss

75% of the tropical forest existing in 2000 will be lost in 2120, 2160, and 2220 in Asia, Africa, and America, respectively (average uncertainty of \pm 45 years).

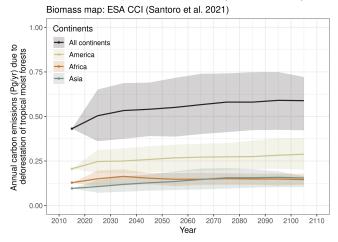
Tropical forest cover loss


- 20 countries, 5 states in Brazil, and 1 region in India (having > 1 Mha of forest in 2020) will lose all their tropical forest by 2100.
- No more tropical forests in 6 biodiversity hotspots (extinction of 29,140 endemic species of plants and 4,576 species of vertebrates).

Regions	fc2000 (Kha)	fc2010 (Kha)	fc2020 (Kha)	d (Kha/yr)	p (%/yr)	fc2050 (Kha)	fc2100 (Kha)	loss21 (%)	yr75
Countries									
Brazil	375,893	349,784	334,982	1,537	0.4	288,862	211,996	44	2183
DRC	131,621	126,164	117,812	860	0.7	92,007	48,999	63	2114
Indonesia	141,262	127,699	116,317	1,215	1.0	79,853	19,078	86	2087
Continents									
America	690,358	648.928	621,160	2,893	0.5	534,552	404,344	41	2197
Africa	275,745	259,667	238,791	2,176	0.9	180,848	115,591	58	2143
Asia	301,412	270,679	246,894	2,533	1.0	171,417	66,034	78	2094
All cont.	1,267,515	1,179,273	1,106,845	7,602	0.7	886,816	585,968	54	2171

Discussion 00000

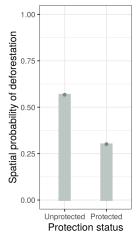
Pantropical map of the future forest cover


Tropical forests in 2100 will be (i) highly fragmented, (ii) concentrated in remote areas (far from roads and towns), pref. in protected areas, and at high elevations.

Pantropical map of future forest cover in 2100 https://forestatrisk.cirad.fr/maps.html

Carbon emissions

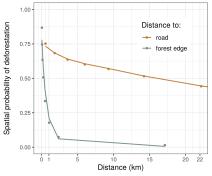
- Future deforestation will impact forests with higher carbon stocks
- Annual carbon emissions will increase from 0.525 Pg/yr in 2010–2020 to 0.746 Pg/yr in 2070–2080 (42% increase)



• Significant PA effect in 74 study areas out of 119 (88% of the TMF in 2010).

Protected area effect

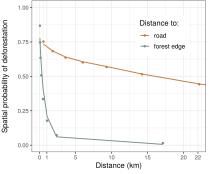
• PA reduce the risk of deforestation by 40%.



Effect of PA on the deforestation risk

Discussion 00000

Road effect


- Significant road effect in 59 study areas out of 119 (90% of the TMF in 2010).
- At 10km from a road, the risk of deforestation decreases by 13%.

Effects of roads and forest edge on the deforestation risk

- Road effect must be interpreted together with forest edge effect.
- At 1km from the forest edge, the risk of deforestation decreases by 93%.

Forest edge effect

Effects of roads and forest edge on the deforestation risk

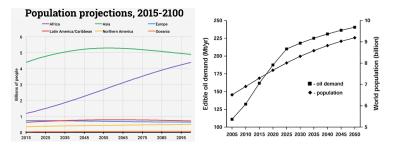
Plan

Results 00000000

Introduction

- Context
- Objectives
- Approach
- 2 Meth
 - Models
 - Spatial variables
 - Forecast

- 3 Results
 - Forest refuge areas
 - Carbon emissions
 - Effects of PA and roads
- Discussion
 - Uncertainty analysis
 - Alternative scenarios
 - Other perspectives


Uncertainty analysis

- Despite uncertainty, results are clear and alarming.
- "Business-as-usual" scenario \neq what **will** happen in the future.
- "Business-as-usual" scenario = in the absence of any change.
- The objective is to alert and create a momentum for change.
- Nonetheless, rather optimistic scenario.

Alternative scenarios : demography and demand

- Demography : in Africa, a large part of the population depends on slash-and-burn agriculture for their livelihood.
- Increasing demand for agricultural commodities : e.g., palm oil, Corley et al. 2009

Other perspectives

- Models can be refined locally (e.g., Ivory-Coast, Madagascar, New-Caledonia) with more information on the context.
- Very rough estimates of biodiversity loss : need for world biodiversity maps.
- (Fragmentation study, regeneration potential, etc.)

Mining activity in New-Caledonia

... Thank you for attention ... https://forestatrisk.cirad.fr

European Commission

 $\langle \hat{} \rangle$