ISEC - 5 July 2018

Accounting for spatial autocorrelation in deforestation modelling (and forecasting)

Ghislain Vieilledent^{1,2} and Frédéric Achard¹

EU Joint Research Center, Ispra, ITALY
Cirad, Montpellier, FRANCE

Motivation

Consequences of deforestation

- Biodiversity loss
- Carbon emissions and climate change

Modelling deforestation

- Scenarios of biodiversity (IPBES) and CO₂ emissions (IPCC)
- Anticipate and take action (ex. policies)

Figure 1 | The main factors, or 'drivers', affecting biodiversity.

Thuiller 2007, Nature

Focus

l ocation of deforestation

- How much deforestation ? (deforestation rates)
- Where deforestation occurs preferentially?
- Biodiversity and carbon stock vary spatially

Vieilledent et al. 2016, J. of Ecol. ・ロト ・四ト ・ヨト ・ヨト

Э

3

State of art

Model

- $Y_i \in \{0,1\}$
- $Y_i \sim \mathcal{B}ernoulli(\theta_i)$
- $logit(\theta_i) = f(spatial factors_i)$

Spatial factors

- Landscape : distance to forest edge
- Accessibility : altitude, slope, distance to road, town
- Land-policy : protected area network

Research gap

Unmeasured factors

- Many other explicative spatial factors
- Population density, soil, geographical barriers, controls...
- Some not measured, some unmeasurable

Proposed model

- $logit(\theta_{ij}) = f(spatial factors_i) + \rho_j$
- Spatial random effects ρ_j to account for unmeasured factors

Objective

Model comparison

- Model 1 : $logit(\theta_{ij}) = f(spatial factors_i)$
- Model 2 : $logit(\theta_{ij}) = f(spatial factors_i) + \rho_j$

Challenge

- Use the model for forecasting (not only for inference)
- On large spatial scale

Data

Deforestation process in Madagascar. Current rate : 100,000 ha/yr.

Data

Response variable

- $Y_i \in \{0, 1\}$
- Deforestation in Madagascar on the period 2000-2010
- 30 m resolution
- 20,000 points i (deforested/non-deforested)

Vieilledent et al. 2018 Biol. Conserv.

	Methods	
Data		

Explicative variables

Product	Source	Variable derived	Unit	Resolution (m)
Deforestation maps (1990-2000-2010)	Vieilledent et al. 2018	distance to forest edge	m	30
		distance to past deforestation	m	30
Digital Elevation Model	SRTM v4.1 CSI-CGIAR	altitude	m	90
		slope	0	90
Highways	OSM - Geofabrik	distance to roads	m	150
Places		distance to towns	m	150
Waterways		distance to river	m	150
Protected areas	Rebioma	presence of protected area	-	30

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● のへで

Model

Spatial model

- $logit(\theta_{ij}) = f(spatial factors_i) + \rho_j$
- ρ_j : 10 km resolution (\sim 1500 cells j)

Intrinsic CAR

 $p(\rho_j|\rho_{j'}) = \mathcal{N}ormal(\mu_j, V_{\rho}/n_j)$

 $\begin{array}{l} \mu_j : \text{mean of } \rho_{j'} \text{ in the neighborhood of } j. \\ V_\rho : \text{variance of the spatial random effects.} \\ n_j : \text{number of neighbors for cell } j. \end{array}$

Software

Python deforestprob package

- Efficient geoprocessing on (very) large rasters
- Sampling, inference, and spatial projection
- Gibbs sampler in C using Metropolis algorithm
- GitHub: https://github.com/ ghislainv/deforestprob

Usable in R

- reticulate R package
- Access to Python functions and objects
- Plotting

▲ □ ▶ ▲ 酉 ▶ ▲ 臣 ▶ ▲ 臣 ● ● ● ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Parameter estimates

Parameter	Mean	GLM SE	Mean	iCAR SE
Intercept	0.0112	0.020	-0.705	0.108
protected area	-0.3747	0.034	-0.549	0.0694
altitude	-0.1774	0.019	-0.662	0.0713
slope	-0.1166	0.018	-0.147	0.0255
dist. defor	-0.7537	0.031	-0.869	0.0546
dist. defor ²	0.0750	0.005	0.0734	0.00595
dist. edge	-0.3711	0.024	-0.51	0.0366
dist. road	-0.0006	0.016	-0.101	0.0464
dist. town	-0.0938	0.016	-0.0168	0.0424
Vrho	-	-	7.49	0.512

Small changes in parameter estimates, but same sign (\pm) and relative magnitude.

Intuitive effects. Both models are rather good for explanatory modeling.

Spatial random effects

- Hotspots of deforestation
- Not explained by the fixed env. factors

Spatial probability of deforestation

- Computed at 30 m resolution
- Greener : lower probability
- Darker red : higher probability

Model performance

Based on the 20,000 observations

- GLM explains only 8% of the deviance
- iCAR model better whatever the index
- GLM closer to the null model

Index	null	GLM	iCAR
Deviance expl. (%)	0	8	30
OA (%)	50	62	79
Kappa (%)	0	24	58

Forecasting power

- Map of probability of deforestation in 2010 + known deforested area on 2010-2014
- Observed vs. projected deforestation on 2010-2014
- \bullet Area deforested in 10 \times 10 km areas

Index	GLM	iCAR
Pearson corr.	12%	31%

イロト イポト イヨト イヨト

3

Comparing long term forecast

Deforestation 2010-2050

- Assuming deforestation of 100,000 ha/yr (current rate)
- green : residual forest in 2050
- red : deforested area 2010-2050
- blue : differences in model predictions

Comparing long term forecast

イロト イポト イヨト イヨト

3

Advantages of the iCAR model

- Account for unmeasured or unmeasurable factors
- Spatial random effect for all cells in the landscape
- Model performance is higher
- More accurate projections

イロト イポト イヨト イヨト

3

Limitations

- Better, but still with a lot of uncertainty
- Random effects can stand for many different factors
- Do they last in time (ex. people migration)?
- It is always better to include fixed effects if possible

Extending work to the world humid tropical forest

Tropical forest conservation

- Tropical forests are disappearing at an alarming rate
- Engage for forest and biodiversity conservation
- Tarzan will tank you !

